--- title: "deepSTRAPP: Continuous trait data" author: "Maël Doré" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{deepSTRAPP: Continuous trait data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r set_options, include = FALSE} knitr::opts_chunk$set( eval = FALSE, # Chunks of codes will not be evaluated by default collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 # Set device size at rendering time (when plots are generated) ) ``` ```{r setup, eval = TRUE, include = FALSE} library(deepSTRAPP) is_dev_version <- function (pkg = "deepSTRAPP") { # # Check if ran on CRAN # not_cran <- identical(Sys.getenv("NOT_CRAN"), "true") # || interactive() # Version number check version <- tryCatch(as.character(utils::packageVersion(pkg)), error = function(e) "") dev_version <- grepl("\\.9000", version) # not_cran || dev_version return(dev_version) } ``` ```{r adjust_dpi_CRAN, include = FALSE, eval = !is_dev_version()} knitr::opts_chunk$set( dpi = 50 # Lower DPI to save space ) ``` ```{r adjust_dpi_dev, include = FALSE, eval = is_dev_version()} knitr::opts_chunk$set( dpi = 72 # Default DPI for the dev version ) ```
This is a simple example that shows how deepSTRAPP can be used to test for __correlations__ between a __continuous trait__ and __diversification rates__ along evolutionary times. It presents the main functions in a typical __deepSTRAPP workflow__.
For an example with __binary data__ (2 levels), please see the example in the __Main tutorial__: `vignette("main_tutorial")`. For an example with __biogeographic data__, see this vignette: `vignette("deepSTRAPP_biogeographic_data")`.
Please note that the trait data and phylogeny calibration used in this example are __NOT valid biological data__. They were modified in order to provide results illustrating the usefulness of deepSTRAPP.
```{r load_data_cont} # ------ Step 0: Load data ------ # ## Load trait df data("Ponerinae_trait_tip_data", package = "deepSTRAPP") dim(Ponerinae_trait_tip_data) View(Ponerinae_trait_tip_data) # Extract continuous trait data as a named vector Ponerinae_cont_tip_data <- setNames(object = Ponerinae_trait_tip_data$fake_cont_tip_data, nm = Ponerinae_trait_tip_data$Taxa) # This not valid biological data. For the sake of this example, we will assume this is size data. # Select a color scheme from lowest to highest values (i.e., smallest to largest ants) color_scale = c("darkgreen", "limegreen", "orange", "red") ## Load phylogeny with old time-calibration data("Ponerinae_tree_old_calib", package = "deepSTRAPP") plot(Ponerinae_tree_old_calib) ape::Ntip(Ponerinae_tree_old_calib) == length(Ponerinae_cont_tip_data) ## Check that trait data and phylogeny are named and ordered similarly all(names(Ponerinae_cont_tip_data) == Ponerinae_tree_old_calib$tip.label) ## Inputs needed for Step 1 are the tip_data (Ponerinae_cont_tip_data) and the phylogeny # (Ponerinae_tree_old_calib), and optionally, a color scheme (color_scale). ``` ```{r prepare_trait_data_cont} # ------ Step 1: Prepare trait data ------ # ## Goal: Map trait evolution on the time-calibrated phylogeny # 1.1/ Fit evolutionary models to trait data using Maximum Likelihood. # 1.2/ Select the best fitting model comparing AICc. # 1.3/ Infer ancestral characters estimates (ACE) at nodes. # 1.4/ Infer ancestral states along branches using interpolation to produce a `contMap`. library(deepSTRAPP) # All these actions are performed by a single function: deepSTRAPP::prepare_trait_data() ?deepSTRAPP::prepare_trait_data() # Run prepare_trait_data with default options # For continuous trait, a BM model is assumed by default. Ponerinae_trait_object <- prepare_trait_data(tip_data = Ponerinae_cont_tip_data, trait_data_type = "continuous", phylo = Ponerinae_tree_old_calib, seed = 1234) # Set seed for reproducibility # Explore output str(Ponerinae_trait_object, 1) # Extract the contMap representing continuous trait evolution on the phylogeny Ponerinae_contMap <- Ponerinae_trait_object$contMap plot_contMap(Ponerinae_contMap) # Extract the Ancestral Character Estimates (ACE) = trait values at nodes Ponerinae_ACE <- Ponerinae_trait_object$ace head(Ponerinae_ACE) ## Inputs needed for Step 2 are the contMap, and optionally, the tip_data (Ponerinae_cont_tip_data), # and the ACE (Ponerinae_ACE) ``` ```{r prepare_diversification_data_cont} # ------ Step 2: Prepare diversification data ------ # ## Goal: Map evolution of diversification rates and regime shifts on the time-calibrated phylogeny # Run a BAMM (Bayesian Analysis of Macroevolutionary Mixtures) # You need the BAMM C++ program installed in your machine to run this step. # See the BAMM website: http://bamm-project.org/ and the companion R package [BAMMtools]. # 2.1/ Set BAMM - Record BAMM settings and generate all input files needed for BAMM. # 2.2/ Run BAMM - Run BAMM and move output files in dedicated directory. # 2.3/ Evaluate BAMM - Produce evaluation plots and ESS data. # 2.4/ Import BAMM outputs - Load `BAMM_object` in R and subset posterior samples. # 2.5/ Clean BAMM files - Remove files generated during the BAMM run. # All these actions are performed by a single function: deepSTRAPP::prepare_diversification_data() ?deepSTRAPP::prepare_diversification_data() # Run BAMM workflow with deepSTRAPP ## This step is time-consuming. You can skip it and load directly the result if needed Ponerinae_BAMM_object_old_calib <- prepare_diversification_data( BAMM_install_directory_path = "./software/bamm-2.5.0/", # To adjust to your own path to BAMM phylo = Ponerinae_tree_old_calib, prefix_for_files = "Ponerinae", seed = 1234, # Set seed for reproducibility numberOfGenerations = 10^7, # Set high for optimal run, but will take a long time BAMM_output_directory_path = "./BAMM_outputs/") # Load directly the result data(Ponerinae_BAMM_object_old_calib) # This dataset is only available in development versions installed from GitHub. # It is not available in CRAN versions. # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # Explore output str(Ponerinae_BAMM_object_old_calib, 1) # Record the regime shift events and macroevolutionary regimes parameters across posterior samples str(Ponerinae_BAMM_object_old_calib$eventData, 1) # Mean speciation rates at tips aggregated across all posterior samples head(Ponerinae_BAMM_object_old_calib$meanTipLambda) # Mean extinction rates at tips aggregated across all posterior samples head(Ponerinae_BAMM_object_old_calib$meanTipMu) # Plot mean net diversification rates and regime shifts on the phylogeny plot_BAMM_rates(Ponerinae_BAMM_object_old_calib, labels = FALSE, legend = TRUE) ## Input needed for Step 3 is the BAMM_object (Ponerinae_BAMM_object) ``` ```{r run_deepSTRAPP_cont} # ------ Step 3: Run a deepSTRAPP workflow ------ # ## Goal: Extract traits, diversification rates and regimes at a given time in the past # to test for differences with a STRAPP test # 3.1/ Extract trait data at a given time in the past ('focal_time') # 3.2/ Extract diversification rates and regimes at a given time in the past ('focal_time') # 3.3/ Compute STRAPP test # 3.4/ Repeat previous actions for many timesteps along evolutionary time # All these actions are performed by a single function: # For a single 'focal_time': deepSTRAPP::run_deepSTRAPP_for_focal_time() # For multiple 'time_steps': deepSTRAPP::run_deepSTRAPP_over_time() ?deepSTRAPP::run_deepSTRAPP_for_focal_time() ?deepSTRAPP::run_deepSTRAPP_over_time() ## Set for time steps of 5 My. Will generate deepSTRAPP workflows for 0 to 40 Mya. # nb_time_steps <- 5 time_step_duration <- 5 time_range <- c(0, 40) # Run deepSTRAPP on net diversification rates ## This step is time-consuming. You can skip it and load directly the result if needed Ponerinae_deepSTRAPP_cont_old_calib_0_40 <- run_deepSTRAPP_over_time( contMap = Ponerinae_contMap, ace = Ponerinae_ACE, tip_data = Ponerinae_cont_tip_data, trait_data_type = "continuous", BAMM_object = Ponerinae_BAMM_object_old_calib, # nb_time_steps = nb_time_steps, time_range = time_range, time_step_duration = time_step_duration, seed = 1234, # Set seed for reproducibility # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) return_perm_data = TRUE, # Needed to get trait data and plot rates through time (See 4.3) extract_trait_data_melted_df = TRUE, # Needed to get diversification data and plot rates through time (See 4.3) extract_diversification_data_melted_df = TRUE, # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) return_STRAPP_results = TRUE, # Needed to plot updated contMaps (See 4.4) return_updated_trait_data_with_Map = TRUE, # Needed to map diversification rates on updated phylogenies (See 4.5) return_updated_BAMM_object = TRUE, verbose = TRUE, verbose_extended = TRUE) # Load the deepSTRAPP output summarizing results for 0 to 40 My data(Ponerinae_deepSTRAPP_cont_old_calib_0_40, package = "deepSTRAPP") # This dataset is only available in development versions installed from GitHub. # It is not available in CRAN versions. # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. ## Explore output str(Ponerinae_deepSTRAPP_cont_old_calib_0_40, max.level = 1) # See next step for how to generate plots from those outputs # Display test summary # Can be passed down to [deepSTRAPP::plot_STRAPP_pvalues_over_time()] to generate a plot # showing the evolution of the test results across time Ponerinae_deepSTRAPP_cont_old_calib_0_40$pvalues_summary_df # Access STRAPP test results # Can be passed down to [deepSTRAPP::plot_histograms_STRAPP_tests_over_time()] to generate plot # showing the null distribution of the test statistics str(Ponerinae_deepSTRAPP_cont_old_calib_0_40$STRAPP_results, max.level = 2) # Access trait data in a melted data.frame head(Ponerinae_deepSTRAPP_cont_old_calib_0_40$trait_data_df_over_time) # Access the diversification data in a melted data.frame head(Ponerinae_deepSTRAPP_cont_old_calib_0_40$diversification_data_df_over_time) # Both can be passed down to [deepSTRAPP::plot_rates_through_time()] to generate a plot # showing the evolution of diversification rates though time in relation to trait values # Access updated contMaps for each focal time # Can be used to plot contMap with branch cut-off at focal time with [deepSTRAPP::plot_contMap()] str(Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time, max.level = 2) # Access updated BAMM_object for each focal time # Can be used to map rates and regime shifts on phylogeny with branch cut-off # at focal time with [deepSTRAPP::plot_BAMM_rates()] str(Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time, max.level = 2) ## Input needed for Step 4 is the deepSTRAPP object (Ponerinae_deepSTRAPP_cont_old_calib_0_40) ``` ```{r plot_pvalues_cont} # ------ Step 4: Plot results ------ # ## Goal: Summarize the outputs in meaningful plots # 4.1/ Plot evolution of STRAPP tests p-values through time # 4.2/ Plot histogram of STRAPP test stats # 4.3/ Plot evolution of rates through time in relation to trait values # 4.4/ Plot rates vs. trait values across branches for a given 'focal_time' # 4.5/ Plot updated densityMaps mapping trait evolution for a given 'focal_time' # 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' # 4.7/ Combine 4.5 and 4.6 to plot both mapped phylogenies with trait evolution (4.5) # and diversification rates and regimes (4.6). # Each plot is achieved through a dedicated function # Load the deepSTRAPP output summarizing results for 0 to 40 My data(Ponerinae_deepSTRAPP_cont_old_calib_0_40, package = "deepSTRAPP") # This dataset is only available in development versions installed from GitHub. # It is not available in CRAN versions. # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. ### 4.1/ Plot evolution of STRAPP tests p-values through time #### # ?deepSTRAPP::plot_STRAPP_pvalues_over_time() ## Plot results of Spearman's tests over time deepSTRAPP::plot_STRAPP_pvalues_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40) # This is the main output of deepSTRAPP. It shows the evolution of the significance # of the STRAPP tests over time. # This example highlights the importance of deepSTRAPP as the significance of STRAPP tests # change over time. # Correlation between trait values and net diversification rates are not significant in the present # (assuming a significant threshold of alpha = 0.05). # Meanwhile, correlations were significant in the past between 5 My to 25 My (the green area). # This result supports the idea that differences in biodiversity in relation to trait values # (e.g., ant size) can be explained by correlations between rates and net diversification rates # that occurred in the past. Without use of deepSTRAPP, this conclusion would not have been supported # by current diversification rates alone. ``` ```{r plot_pvalues_cont_eval_dev, eval = is_dev_version(), echo = FALSE} # Load the deepSTRAPP output summarizing results for 0 to 40 My data(Ponerinae_deepSTRAPP_cont_old_calib_0_40, package = "deepSTRAPP") # Produce the results of overall Kruskal-Wallis tests over time ggplot_STRAPP_pvalues <- deepSTRAPP::plot_STRAPP_pvalues_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, display_plot = FALSE) # Adjust main title size ggplot_STRAPP_pvalues <- ggplot_STRAPP_pvalues + ggplot2::theme(plot.title = ggplot2::element_text(size = 18)) # Print plot print(ggplot_STRAPP_pvalues) ``` ```{r plot_pvalues_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.1_plot_pvalues.PNG") ``` ```{r plot_histogram_STRAPP_tests_cont} ### 4.2/ Plot histogram of STRAPP test stats #### # Plot an histogram of the distribution of the test statistics used to assess # the significance of STRAPP tests # For a single 'focal_time': deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time() # For multiple 'time_steps': deepSTRAPP::plot_histograms_STRAPP_tests_over_time() # ?deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time # ?deepSTRAPP::plot_histograms_STRAPP_tests_over_time ## These functions are used to provide visual illustration of the results of each STRAPP test. # They can be used to complement the provision of the statistical results summarized in Step 3. # Display the time-steps Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps # Plot the histogram of test stats for time-step n°5 = 20 My plot_histogram_STRAPP_test_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 20) # The black line represents the expected value under the null hypothesis H0 => Δ abs(Spearman rho stat) = 0. # The histogram shows the distribution of the test statistics as observed # across the 1000 posterior samples from BAMM. # The red line represents the significance threshold for which 95% of the observed data # exhibited a higher value than expected. # Since this red line is above the null expectation (quantile 5% = 0.036), # the test is significant for a value of alpha = 0.05. # Therefore, ant size was significantly correlated with net diversification rates 20 Mya. # Since we performed a two-tailed test (default), we do not know the direction of this correlation (yet). # Plot the histograms of test stats for all time-steps plot_histograms_STRAPP_tests_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40) ``` ```{r plot_histogram_STRAPP_tests_cont_eval_dev, fig.width = 8.5, fig.height = 6, out.width = "100%", eval = is_dev_version(), echo = FALSE} # Plot the histogram of test stats for time-step n°5 = 20 My plot_histogram_STRAPP_test_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 20) ``` ```{r plot_histogram_STRAPP_tests_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.2_plot_STRAPP_tests.PNG") ``` ```{r plot_rates_through_time_cont} ### 4.3/ Plot evolution of rates through time ~ trait data #### # ?deepSTRAPP::plot_rates_through_time() # Generate ggplot plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, plot_CI = TRUE) # This plot helps to visualize how correlations between trait values and rates evolved over time. # Here, we observe a "negative" correlation as ants in the lowest quartile of trait values (in blue) # display the highest net diversification rates over time, while ants in the highest quartile # of trait values (in red) display the lowest net diversification rates over time. # However, in the present, we recorded an increase in diversification rates that blurred # these differences and led to a non-significant STRAPP test when comparing current rates. # This plot, alongside results of deepSTRAPP, supports the Diversification Rate Hypothesis # in showing how ant lineages with low trait values (e.g., small size) may have accumulated faster # than ant lineages with high trait value (e.g., large size), especially between 5 to 25 My. # N.B.: The increase of diversification rates recorded in the present may largely be artifactual, # due to the fact some lineages in the present will go extinct in the future, # but have not yet been recorded as such. # This bias is named the "pull of the present", and can impair evaluation of # the Diversification Rate Hypothesis based only on current rates. # deepSTRAPP offers a solution to this issue by investigating rate differences at any time in the past. ``` ```{r plot_rates_through_time_cont_eval_dev, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE} # Produce RTT plot ggplot_RTT_list <- plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, plot_CI = TRUE, display_plot = FALSE) # Adjust title size ggplot_RTT <- ggplot_RTT_list$rates_TT_ggplot + ggplot2::theme(plot.title = ggplot2::element_text(size = 18), axis.title = ggplot2::element_text(size = 16)) # Print plot print(ggplot_RTT) ``` ```{r plot_rates_through_time_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.3_plot_rates_through_time.PNG") ``` ```{r plot_rates_vs_traits_cont} ### 4.4/ Plot rates vs. ranges across branches for a given focal time #### # ?deepSTRAPP::plot_rates_vs_trait_data_for_focal_time() # ?deepSTRAPP::plot_rates_vs_trait_data_over_time() # This plot help to visualize differences in rates vs. ranges across all branches # found at specific time-steps (i.e., 'focal_time'). # Generate ggplot for time = 20 My plot_rates_vs_trait_data_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 20, color_scale = color_scale) # Here we focus on T = 20 My to highlight the correlation detected in the previous steps. # You can see that ants in the highest trait values (in red) exhibits the lowest rates, at this time-step. # This plot, alongside other results of deepSTRAPP, supports the Diversification Rate Hypothesis in showing # how ant lineages with low trait values (e.g., small size) may have accumulated faster # than ant lineages with high trait value (e.g., large size), especially between 5 to 25 My. # Additionally, the plot displays summary statistics for the STRAPP test associated with the data shown: # * An observed statistic computed across the mean rates and trait values shown on the plot. # Here, rho obs = -0.743, indicating a negative correlation between size and diversification in ponerine ants. # This is not the statistic of the STRAPP test itself, which is conducted across all BAMM posterior samples. # * The quantile of null statistic distribution at the significant threshold used to define test significance. # The test will be considered significant (i.e., the null hypothesis is rejected) # if this value is higher than zero, as shown on the histogram in Section 4.2. # Here, Q5% = 0.036, so the test is significant (according to this significance threshold). # * The p-value of the associated STRAPP test. Here, p = 0.022. # Plot rates vs. ranges for all time-steps plot_rates_vs_trait_data_over_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, color_scale = color_scale) ``` ```{r plot_rates_vs_traits_cont_eval_dev, fig.height = 7, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE} # Select a color scheme from lowest to highest values color_scale = c("darkgreen", "limegreen", "orange", "red") # Generate ggplot for time = 20 My plot_rates_vs_trait_data_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 20, color_scale = color_scale) ``` ```{r plot_rates_vs_traits_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.4_plot_rates_vs_traits.PNG") ``` ```{r plot_updated_contMap_cont, eval = FALSE, echo = TRUE} ### 4.5/ Plot updated contMap mapping trait evolution for a given 'focal_time' #### # ?deepSTRAPP::plot_contMap() ## These plots help to visualize the evolution of trait values across the phylogeny, ## and to focus on tip values at specific time-steps. # Display the time-steps Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps # Extract root age root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) ## The next plot shows the evolution of trait values across the whole phylogeny (100-0 My). # Plot initial contMap (t = 0) contMap_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] plot_contMap(contMap_0My$contMap, color_scale = c("darkgreen", "limegreen", "orange", "red"), lwd = 0.7, # Adjust width of branches fsize = c(0.1, 1)) # Reduce tip label size abline(v = root_age - 20, col = "red", lty = 2) # Show where the phylogeny will be cut ## The next plot shows the evolution of trait values from root to 20Mya (100-20 My). # Plot updated contMap for time-step n°5 = 20 My contMap_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[5]] plot_contMap(contMap_20My$contMap, color_scale = c("darkgreen", "limegreen", "orange", "red"), lwd = 0.9, # Adjust width of branches fsize = c(0.2, 1)) # Reduce tip label size ``` ```{r plot_updated_contMap_cont_eval_dev, eval = is_dev_version(), echo = TRUE} # Extract root age root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) ## The next plot shows the evolution of trait values across the whole phylogeny (100-0 My). # Plot initial contMap (t = 0) contMap_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] plot_contMap(contMap_0My$contMap, color_scale = c("darkgreen", "limegreen", "orange", "red"), lwd = 0.7, # Adjust width of branches fsize = c(0.1, 1)) # Reduce tip label size abline(v = root_age - 20, col = "red", lty = 2) # Show where the phylogeny will be cut ## The next plot shows the evolution of trait values from root to 20Mya (100-20 My). # Plot updated contMap for time-step n°5 = 20 My contMap_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[5]] plot_contMap(contMap_20My$contMap, color_scale = c("darkgreen", "limegreen", "orange", "red"), lwd = 0.9, # Adjust width of branches fsize = c(0.2, 1)) # Reduce tip label size ``` ```{r plot_updated_contMap_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.5_plot_updated_contMap_1.PNG") knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.5_plot_updated_contMap_2.PNG") ``` ```{r plot_BAMM_rates_cont} ### 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' #### # ?deepSTRAPP::plot_BAMM_rates() ## These plots help to visualize the evolution of diversification rates across the phylogeny, ## and to focus on tip values at specific time-steps. # Display the time-steps Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps # Extract root age root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) ## The next plot shows the evolution of net diversification rates across the whole phylogeny (100-0 My). # Plot diversification rates on initial phylogeny (t = 0) BAMM_map_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[1]] plot_BAMM_rates(BAMM_map_0My, labels = FALSE, par.reset = FALSE) abline(v = root_age - 20, col = "red", lty = 2) # Show where the phylogeny will be cut title(main = "BAMM rates for 100-0 My") ## The next plot shows the evolution of net diversification rates from root to 20 Mya (100-20 My). # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My BAMM_map_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[5]] plot_BAMM_rates(BAMM_map_20My, labels = FALSE, colorbreaks = BAMM_map_20My$initial_colorbreaks$net_diversification) title(main = "BAMM rates for 100-20 My") ``` ```{r plot_BAMM_rates_cont_eval_dev, eval = is_dev_version(), echo = FALSE} old_par <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) # Plot diversification rates on initial phylogeny (t = 0) BAMM_map_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[1]] plot_BAMM_rates(BAMM_map_0My, labels = FALSE, legend = TRUE, par.reset = FALSE) abline(v = max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) - 20, col = "red", lty = 2) # Show where the phylogeny will be cut title(main = "BAMM rates for 100-0 My") # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My BAMM_map_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[5]] plot_BAMM_rates(BAMM_map_20My, labels = FALSE, legend = TRUE, colorbreaks = BAMM_map_20My$initial_colorbreaks$net_diversification) title(main = "BAMM rates for 100-20 My") par(old_par) ``` ```{r plot_BAMM_rates_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.6_plot_BAMM_rates.PNG") ``` ```{r plot_traits_vs_rate_maps_cont} ### 4.7/ Plot both trait evolution and diversification rates and regimes updated for a given 'focal_time' #### # ?deepSTRAPP::plot_traits_vs_rates_on_phylogeny_for_focal_time() ## These plots help to visualize simultaneously the evolution of trait and diversification rates ## across the phylogeny, and to focus on tip values at specific time-steps. # Display the time-steps Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps ## The next plot shows the evolution of trait values and rates across the whole phylogeny (100-0 My). # Plot diversification rates on initial phylogeny (t = 0) plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 0, ftype = "off", lwd = 0.7, color_scale = c("darkgreen", "limegreen", "orange", "red"), labels = FALSE, legend = FALSE, par.reset = FALSE) ## The next plot shows the evolution of trait values and rates from root to 20 Mya (100-20 My). # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 20, ftype = "off", lwd = 1.2, color_scale = c("darkgreen", "limegreen", "orange", "red"), labels = FALSE, legend = FALSE, par.reset = FALSE) ``` ```{r plot_traits_vs_rate_maps_cont_eval_dev, fig.height = 7, eval = is_dev_version(), echo = FALSE} # Plot diversification rates on initial phylogeny (t = 0) plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 0, ftype = "off", lwd = 0.7, color_scale = c("darkgreen", "limegreen", "orange", "red"), labels = FALSE, legend = FALSE, par.reset = FALSE) # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My plot_traits_vs_rates_on_phylogeny_for_focal_time( deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, focal_time = 20, ftype = "off", lwd = 1.2, color_scale = c("darkgreen", "limegreen", "orange", "red"), labels = FALSE, legend = FALSE, par.reset = FALSE) ``` ```{r plot_traits_vs_rate_maps_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"} # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.7_plot_traits_vs_rate_maps_1.PNG") knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.7_plot_traits_vs_rate_maps_2.PNG") ```