## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(denim) ## ----------------------------------------------------------------------------- sir_parametric <- denim_dsl({ S -> I = beta * (I/N) * S * timeStep I -> R = d_weibull(scale = r_scale, shape = r_shape) }) ## ----------------------------------------------------------------------------- sir_nonparametric <- denim_dsl({ S -> I = beta * (I/N) * S * timeStep I -> R = nonparametric(dwelltime_dist) }) ## ----------------------------------------------------------------------------- # parameters mod_params <- list( beta = 0.4, N = 1000, r_scale = 4, r_shape = 3 ) # initial population init_vals <- c(S = 950, I = 50, R = 0) # simulation duration and timestep sim_duration <- 30 timestep <- 0.05 ## ----------------------------------------------------------------------------- parametric_mod <- sim(sir_parametric, initialValues = init_vals, parameters = mod_params, simulationDuration = sim_duration, timeStep = timestep) plot(parametric_mod, ylim = c(0, 1000)) ## ----------------------------------------------------------------------------- # Compute discrete distribution of dwell-tinme # dist_func - R distribution function for dwell time (pexp, pgamma, etc.) # ... - parameters for dist_func compute_dist <- function(dist_func,..., timestep=0.05, error_tolerance=0.0001){ maxtime <- timestep prev_prob <- 0 prob_dist <- numeric() while(TRUE){ # get current cumulative prob and check whether it is sufficiently close to 1 temp_prob <- ifelse( dist_func(maxtime, ...) < (1 - error_tolerance), dist_func(maxtime, ...), 1); # get f(t) curr_prob <- temp_prob - prev_prob prob_dist <- c(prob_dist, curr_prob) prev_prob <- temp_prob maxtime <- maxtime + timestep if(temp_prob == 1){ break } } prob_dist } ## ----------------------------------------------------------------------------- # Compute the discrete distribution dwelltime_dist <- compute_dist(pweibull, scale = mod_params$r_scale, shape = mod_params$r_shape, timestep = timestep) # Compute the discrete distribution nonparametric_mod <- sim(sir_nonparametric, initialValues = init_vals, parameters = list( beta = mod_params$beta, N = mod_params$N, dwelltime_dist = dwelltime_dist ), simulationDuration = sim_duration, timeStep = timestep) plot(nonparametric_mod, ylim = c(0, 1000)) ## ----echo=FALSE--------------------------------------------------------------- first_dist <- compute_dist(pweibull, scale = 1.5, shape = 4, timestep = timestep) second_dist <- compute_dist(pweibull, scale = 3, shape = 3.5, timestep = timestep) first_dist <- c(rep(0, length(second_dist) - length(first_dist)), first_dist) multimodal_dist <- first_dist + second_dist ## ----------------------------------------------------------------------------- timestep <- 0.05 plot(seq(0, by = 0.05, length.out = length(multimodal_dist)), multimodal_dist, type = "l", col = "#374F77", lty = 1, lwd = 3, xlab = "Length of stay (days)", ylab = "", yaxt = 'n') ## ----------------------------------------------------------------------------- # model parameter parameters <- list(beta = 0.4, N = 1000, dwelltime_dist = multimodal_dist) # initial population init_vals <- c(S = 950, I = 50, R = 0) # simulation duration and timestep sim_duration <- 30 timestep <- 0.05 # Run the model with multimodel distribution nonparametric_mod <- sim( sir_nonparametric, initialValues = init_vals, parameters = parameters, simulationDuration = sim_duration, timeStep = timestep) plot(nonparametric_mod, ylim = c(0, 1000))