Package 'div'

October 13, 2022

```
Type Package
Title Report on Diversity and Inclusion in a Corporate Setting
Version 0.3.1
Maintainer Philippe J.S. De Brouwer <philippe@de-brouwer.com>
License AGPL (>= 3)
URL http://www.de-brouwer.com/div/
BugReports https://github.com/DrPhilippeDB/div/issues/
Description Facilitate the analysis of teams in a corporate setting:
              assess the diversity per grade and job, present the results,
              search for bias (in hiring and/or promoting processes).
              It also provides methods to simulate the effect of bias, random team-data, etc.
              White paper: 'Philippe J.S. De Brouwer' (2021) <a href="http://example.com/http:">http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://example.com/http://
              //www.de-brouwer.com/assets/div/div-white-paper.pdf>.
              Book (chapter 36): 'Philippe J.S. De Brouwer' (2020, ISBN:978-1-119-63272-
              6) and 'Philippe J.S. De Brouwer' (2020) <doi:10.1002/9781119632757>.
Encoding UTF-8
Collate 'headers.R' 'diversity.R' 'div_conf_colour.R'
              'div_fake_team.R' 'div_ci_median.R' 'div_paygap.R'
              'div_parse_paygap.R' 'div_round_paygap.R' 'div_gauge_plot.R'
              'div_plot_paygap_distribution.R' 'div_add_median_label.R'
              'print.paygap.R' 'summary.paygap.R'
Depends R (>= 3.4.0), tidyverse
Imports rlang, dplyr, tibble, tidyr, stringr, magrittr, ggplot2,
              gridExtra, plotly, pryr, rpart, kableExtra
Suggests flexdashboard, knitr, rmarkdown, grid, lattice
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Author Philippe J.S. De Brouwer [aut, cre]
Date/Publication 2021-05-06 08:00:02 UTC
```

2 diversity

R topics documented:

Index		12
	summary.paygap	10
	print.paygap	
	div_round_paygap	9
	div_plot_paygap_distribution	8
	div_paygap	8
	div_parse_paygap	7
	div_gauge_plot	6
	div_fake_team	5
	div_conf_colour	4
	div_ci_median	4
	div_add_median_label	3
	diversity	2

diversity

Calculate the diversity index

Description

This function calculates the entropy of a system with discrete states

Usage

```
diversity(x, prior = NULL)
```

Arguments

x numeric vector, observed probabilities of the classesprior numeric vector, the prior probabilities of the classes

Value

the entropy or diversity measure

```
x <- c(0.4, 0.6)
diversity(x)</pre>
```

 $\begin{tabular}{lll} $\tt div_add_median_label & Adds \ a \ column \ with \ new \ labels \ (H) igh \ and \ (L) \ for \ a \ given \ colName \ (within \ a \ given \ grade \ and \ jobID) \end{tabular}$

Description

This function calculates the entropy of a system with discrete states

Usage

```
div_add_median_label(
   d,
   colName = "age",
   value1 = "T",
   value2 = "F",
   newColName = "isYoung"
)
```

Arguments

d	tibble, a tibble with team data columns as defined in the documentation (at least the column colName (as set by next parameter), 'grade', and 'jobID')
colName	the name of the columns that contains the factor object to be used as explaining dimension for the paygap (defaults to 'gender')
value1	character, the label to be used for the first half of observations (the smallest ones)
value2	character, the label to be used for the second half of observations (the biggest ones)
newColName	the value in new column name that will hold the values value1 and value2

Value

dataframe (with columns grade, jobID, salary_selectedValue, salary_others, n_selectedValue, n_others, paygap, confidence), where "confidence" is one of the following: NA = not available (numbers are too low), "" = no bias detectable, "." = there might be some bias, but we're not sure, "*" = bias detected wit some degree of confidence, "**" = quite sure there is bias, "***" = trust us, this is biased.

```
df <- div_add_median_label(div_fake_team())
colnames(df)</pre>
```

div_conf_colour

div_ci_median

Function to calculate the confidence interval for the median

Description

Function to calculate the confidence interval for the median

Usage

```
div_ci_median(x, conf = 0.95)
```

Arguments

```
x numeric, data from which the median is calcualted conf numeric, the confidence interval as 1 - P(x < x0)
```

Value

```
ci (confidence interval object)
```

Examples

```
x <- 1:100
div_ci_median(x)</pre>
```

div_conf_colour

return a colour code given a number of stars for the confidence level of bias

Description

This function returns a colour (R named colour) based on the confidence level

Usage

```
div_conf_colour(x)
```

Arguments

```
x the string associated to the paygap confidence: NA, ", ',', '*', '***', '***'
```

Value

```
string (named colour)
```

```
div_conf_colour("*")
```

div_fake_team 5

div_fake_team

Generate randomly team-data

Description

This function generates a data frame with data for a team (with salaries, gender, FTE, etc). This is a good start to test the package and to experiment what level of bias will be visible in the paygap for example.

Usage

```
div_fake_team(
    seed = 100,
    N = 200,
    genders = c("F", "M", "0"),
    gender_prob = c(0.4, 0.58, 0.02),
    gender_salaryBias = c(1, 1.1, 1),
    jobIDs = c("sales", "analytics"),
    jobID_prob = c(0.6, 0.4),
    citizenships = c("Polish", "German", "Italian", "Indian", "Other"),
    citizenship_prob = c(0.6, 0.2, 0.1, 0.05, 0.05)
)
```

Arguments

seed numeric, the seed to be used in set.seed()

N numeric, the size of the team to be used (default = 200)

genders character, a vector of the genders to be used

gender_prob numeric, relative probabilities of the different genders to occur (must have the

same length as 'genders')

gender_salaryBias

numeric, vector with the relative salaries of the different genders (must have the

same length as 'genders')

jobIDs character, a vector with the labels of the job categories in the team (they will

appear in each grade)

jobID_prob numeric, a vector with the relative sizes of the different jobs in the team (must

have the same length as 'jobIDs')

citizenships character, a vector of the citizenships to be generated

citizenship_prob

numeric, relative probabilities of the different citizenships to occur (must have

the same length as 'citizenships')

Value

dataframe (employees of the random team)

div_gauge_plot

Examples

```
library(div)
d <- div_fake_team()
head(d)
diversity(table(d$gender))</pre>
```

div_gauge_plot

Uses ggplot2 to produce a gauge plot in RAG colour

Description

This function produces one or more gauge plots coloured in red (R), amber (A) or green (G) for a value between 0 and 1.

Usage

```
div_gauge_plot(df, breaks = c(0, 0.8, 0.95, 1), ncol = NULL, nbrSize = 6)
```

Arguments

df tibble, a tibble with columns "value" and "label" (value = the values between 0

and 1; - label = text to show e.g. paste("group", colnames(t)))

breaks numeric vector with the lower limit, the border between green and amber, the

border between amber and red, and the upper limit

ncol numeric, the number of columns to produce

nbrSize numeric, the font size for the label

Value

ggplot object

```
d <- div_fake_team()
tbl_gender_div <- table(d$gender, d$grade) %>%
    apply(2, diversity, prior = c(50.2, 49.8)) %>%
    tibble(value = ., label = paste("Grade", names(.)))
div_gauge_plot(tbl_gender_div, ncol = 2, nbrSize = 4)
```

div_parse_paygap 7

div_parse_paygap

Prepare the paygap matrix to be published in LaTeX

Description

This function formats the paygap matrix (created by div_paygap()) and prepares it for printing via the function knitr::kable()

Usage

```
div_parse_paygap(
   pg,
   label = NULL,
   min_nbr_show = NULL,
   max_length_jobID = 12,
   max_length_colnames = 9
)
```

Arguments

paygap object as created by div::div_paygap(). This is an S3 object with a specific structure

label character, the label to be used in the caption of the kable object

min_nbr_show numeric, if provided then only groups that have more than min_nbr_show employees in both categories (selectedValue and others) will be shown

max_length_jobID

numeric, if provided the maximal length of the column jobID (in characters)

max_length_colnames

numeric, if provided the maximal length of the column names (in characters)

Value

```
knitr::kable object (for LaTeX)
```

```
d <- div_fake_team()
pg <- div_paygap(d)
div_parse_paygap(pg)</pre>
```

div_paygap Function to calculate the paygap as a ratio.	div_paygap	Function to calculate the paygap as a ratio.	
---	------------	--	--

Description

This function calculates the entropy of a system with discrete states

Usage

```
div_paygap(d, x = "gender", y = "salary", x_ctrl = "F", ctrl_var = "age")
```

Arguments

d	tibble, a tibble with columns as definded
x	the name of the columns that contains the factor object to be used as explaining dimension for the paygap (defaults to 'gender')
У	the name of the columns that contains the numeric value to be used to calculate the paygap (could be salary or bonus for example)
x_ctrl	the value in the column defined by x that should be isolated (this versus the others), defaults to 'F'
ctrl_var	a control variable to be added (shows median per group for that variable)

Value

dataframe (with columns grade, jobID, salary_x_ctrl, salary_others, n_x_ctrl, n_others, paygap, confidence), where "confidence" is one of the following: NA = not available (numbers are too low), "" = no bias detectable, "." = there might be some bias, but we're not sure, "*" = bias detected wit some degree of confidence, "**" = quite sure there is bias, "***" = trust us, this is biased.

Examples

```
df <- div_paygap(div_fake_team())
df</pre>
```

```
div_plot_paygap_distribution
```

Produce a histogram and normal distribution

Description

Plots a histogram, a normal distribution with the same standard deviation and mean as well as one with a mean centred around 1

div_round_paygap 9

Usage

```
div_plot_paygap_distribution(x, label = "Gender", mu_unbiased = 1)
```

Arguments

x numeric vector, column of paygap observations

label character, prefix for the title

mu_unbiased numeric, the mean of the unbiased distribution (for paygaps this should be 1)

Value

```
ggplot2 object
```

Examples

```
d <- div_fake_team()
pg <- div_paygap(d)
div_plot_paygap_distribution(pg$data$paygap)</pre>
```

div_round_paygap

Rounds all numbers in the paygap data-frame

Description

This function all numbers to zero decimals, except the paygap (which is rounded to 2 decimals):

Usage

```
div_round_paygap(x)
```

Arguments

x paygap object (output of div::div_paygap())

Value

the paygap data-frame (tibble only, not the whole paygap object)

```
d <- div_fake_team()
pg <- div_paygap(d)
div_round_paygap(pg)</pre>
```

10 summary.paygap

print.paygap

print the paygap object in the terminal

Description

print the paygap object in the terminal

Usage

```
## S3 method for class 'paygap'
print(x, ...)
```

Arguments

x paygap object, as created by the function div_paygpa()

arguments passed on to the generic print function: print(x\$data)

Value

text output

Examples

```
library(div)
div_fake_team() %>%
    div_paygap %>%
    print
```

summary.paygap

Title

Description

Title

Usage

```
## S3 method for class 'paygap'
summary(object, ...)
```

Arguments

```
object paygap S3 object, as created by the function dif_paygap()
... passed on to summary()
```

summary.paygap 11

Value

a summary of the paygap object

```
library(div)
d <- div_fake_team()
pg <- div_paygap(d)
summary(pg)</pre>
```

Index

* (seniority)	* gauge
<pre>div_add_median_label, 3</pre>	<pre>div_gauge_plot, 6</pre>
div_paygap, 8	* grade
* (type	<pre>div_add_median_label, 3</pre>
<pre>div_add_median_label, 3</pre>	${ t div_paygap, 8}$
div_paygap, 8	* jobID
* -	<pre>div_add_median_label, 3</pre>
<pre>div_add_median_label, 3</pre>	${\tt div_paygap, 8}$
div_paygap, 8	* of
* and	div_add_median_label,3
<pre>div_add_median_label, 3</pre>	div_paygap, 8
div_paygap, 8	* parse
* a	div_conf_colour,4
<pre>div_add_median_label, 3</pre>	div_parse_paygap,7
div_paygap, 8	* paygap
* by	div_add_median_label, 3
<pre>div_add_median_label, 3</pre>	div_conf_colour,4
div_paygap, 8	div_parse_paygap,7
* calculate	div_paygap, 8
<pre>div_add_median_label, 3</pre>	* plot
div_paygap, 8	<pre>div_gauge_plot, 6 * role)</pre>
* controlled	div_add_median_label, 3
<pre>div_add_median_label, 3</pre>	div_paygap, 8
div_paygap, 8	* the
* dataset	div_add_median_label, 3
<pre>div_add_median_label, 3</pre>	div_paygap, 8
div_paygap, 8	art_paygap, o
* distribution	<pre>div_add_median_label, 3</pre>
${ t div_plot_paygap_distribution, 8}$	div_ci_median,4
* d	<pre>div_conf_colour, 4</pre>
<pre>div_add_median_label, 3</pre>	<pre>div_fake_team, 5</pre>
div_paygap, 8	<pre>div_gauge_plot, 6</pre>
* entropy	div_parse_paygap,7
diversity, 2	${ t div_paygap, 8}$
* equity	${ t div_plot_paygap_distribution, 8}$
div_plot_paygap_distribution, 8	${\sf div_round_paygap}, 9$
* for	diversity, 2
div_add_median_label, 3	
div_paygap, 8	print.paygap, 10

INDEX 13

summary.paygap, 10