| Type: | Package |
| Title: | Computational Tools for Meta-Analysis of Diagnostic Accuracy Test |
| Version: | 1.1.1 |
| Date: | 2023-05-27 |
| Maintainer: | Hisashi Noma <noma@ism.ac.jp> |
| Description: | Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available (Noma et al. (2021) <doi:10.1080/23737484.2021.1894408>). |
| Imports: | MASS, mada |
| License: | GPL-3 |
| Encoding: | UTF-8 |
| LazyData: | true |
| NeedsCompilation: | no |
| Packaged: | 2023-05-30 05:07:12 UTC; Hisashi |
| Author: | Hisashi Noma |
| Repository: | CRAN |
| Date/Publication: | 2023-05-30 10:50:10 UTC |
The 'dmetatools' package.
Description
Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available.
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Influence diagnostics based on the AUC of summary ROC curve
Description
Influence diagnostics based on AUC of the summary ROC curve by leave-one-out analysis. The threshold to determine influential outlying study is computed by parametric bootstrap.
Usage
AUC_IF(TP, FP, FN, TN, B=2000, alpha=0.95)
Arguments
TP |
A vector of the number of true positives (TP) |
FP |
A vector of the number of false positives (FP) |
FN |
A vector of the number of false negatives (FN) |
TN |
A vector of the number of true negatives (TN) |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The error level to be calculated for the bootstrap interval of |
Value
Influence diagnostic statistics based on the AUC of the summary ROC curve. The output is sorted by the absolute size of deltaAUC.
-
AUC: The AUC of the summary ROC curve. -
id: identification number. -
AUC(-i): The AUC estimate ifith study is excluded. -
deltaAUC: The difference of AUC estimates for all study and for the subpopulation thatith study is excluded. -
Q1: Default 2.5th percentile of the bootstrap distribution ofdeltaAUC(can be changed byalpha). -
Q2: Default 97.5th percentile of the bootstrap distribution ofdeltaAUC(can be changed byalpha).
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(asthma)
fit1 <- reitsma(asthma) # DTA analysis using the Reitsma model
summary(fit1)
plot(fit1) # Plot the SROC curves
points(fpr(asthma), sens(asthma), cex = .5)
attach(asthma)
AUC_IF(TP, FP, FN, TN, B=2) # Influential analysis based on the AUC
detach(asthma)
# This is an example command for illustration. B should be >= 1000.
Confidence interval for AUC of summary ROC curve
Description
Calculating the confidence interval for AUC of summary ROC curve by parametric bootstrap.
Usage
AUC_boot(TP, FP, FN, TN, B=2000, alpha=0.95)
Arguments
TP |
A vector of the number of true positives (TP) |
FP |
A vector of the number of false positives (FP) |
FN |
A vector of the number of false negatives (FN) |
TN |
A vector of the number of true negatives (TN) |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The confidence level (default: 0.95) |
Value
The confidence interval for AUC of summary ROC curve is calculated.
-
AUC: The AUC of the summary ROC curve. -
AUC_CI: The 95% confidence interval for the AUC of the summary ROC curve (the confidence level can be changed byalpha).
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(cervical)
CT <- cervical[cervical$method==1,]
LAG <- cervical[cervical$method==2,]
MRI <- cervical[cervical$method==3,]
fit1 <- reitsma(CT) # DTA meta-analysis using the Reitsma model
summary(fit1)
fit2 <- reitsma(LAG)
summary(fit2)
fit3 <- reitsma(MRI)
summary(fit3)
plot(fit1) # Plot the SROC curves
lines(sroc(fit2), lty=2, col="blue")
ROCellipse(fit2, lty=2, pch=2, add=TRUE, col="blue")
lines(sroc(fit3), lty=3, col="red")
ROCellipse(fit3, lty=3, pch=3, add=TRUE, col="red")
points(fpr(CT), sens(CT), cex = .5)
points(fpr(LAG), sens(LAG), pch = 2, cex = 0.5, col="blue")
points(fpr(MRI), sens(MRI), pch = 3, cex = 0.5, col="red")
legend("bottomright", c("CT", "LAG", "MRI"), pch = 1:3, lty = 1:3, col=c("black","blue","red"))
AUC_boot(CT$TP,CT$FP,CT$FN,CT$TN,B=5)
AUC_boot(LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_boot(MRI$TP,MRI$FP,MRI$FN,MRI$TN,B=5)
# These are example commands for illustration. B should be >= 1000.
Bootstrap test for the difference of AUCs of summary ROC curves for multiple diagnostic tests
Description
Calculating the difference of AUCs of summary ROC curves (dAUC) and its confidence interval, and the p-value for the test of "dAUC=0" by parametric bootstrap.
Usage
AUC_comparison(TP1, FP1, FN1, TN1, TP2, FP2, FN2, TN2, B=2000, alpha=0.05)
Arguments
TP1 |
A vector of the number of true positives (TP) of test 1 |
FP1 |
A vector of the number of false positives (FP) of test 1 |
FN1 |
A vector of the number of false negatives (FN) of test 1 |
TN1 |
A vector of the number of true negatives (TN) of test 1 |
TP2 |
A vector of the number of true positives (TP) of test 2 |
FP2 |
A vector of the number of false positives (FP) of test 2 |
FN2 |
A vector of the number of false negatives (FN) of test 2 |
TN2 |
A vector of the number of true negatives (TN) of test 2 |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The significance level (default: 0.05) |
Value
The AUCs of the summary ROC curves and their confidence intervals are calculated.
Also, the difference of the AUCs (dAUC) and its confidence interval, and the p-value for the test of "dAUC=0" are provided.
-
AUC1: The AUC of the summary ROC curve for test 1. -
AUC1_CI: The 95% confidence interval for the AUC of the summary ROC curve for test 1 (the confidence level can be changed byalpha). -
AUC2: The AUC of the summary ROC curve for test 2. -
AUC2_CI: The 95% confidence interval for the AUC of the summary ROC curve for test 2 (the confidence level can be changed byalpha). -
dAUC: The difference of the AUC1 and AUC2. -
dAUC_CI: The 95% confidence interval fordAUC(the confidence level can be changed byalpha). -
pvalue: The p-value of the test ofdAUC=0.
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(cervical)
CT <- cervical[cervical$method==1,]
LAG <- cervical[cervical$method==2,]
MRI <- cervical[cervical$method==3,]
fit1 <- reitsma(CT) # DTA meta-analysis using the Reitsma model
summary(fit1)
fit2 <- reitsma(LAG)
summary(fit2)
fit3 <- reitsma(MRI)
summary(fit3)
plot(fit1) # Plot the SROC curves
lines(sroc(fit2), lty=2, col="blue")
ROCellipse(fit2, lty=2, pch=2, add=TRUE, col="blue")
lines(sroc(fit3), lty=3, col="red")
ROCellipse(fit3, lty=3, pch=3, add=TRUE, col="red")
points(fpr(CT), sens(CT), cex = .5)
points(fpr(LAG), sens(LAG), pch = 2, cex = 0.5, col="blue")
points(fpr(MRI), sens(MRI), pch = 3, cex = 0.5, col="red")
legend("bottomright", c("CT", "LAG", "MRI"), pch = 1:3, lty = 1:3, col=c("black","blue","red"))
AUC_comparison(CT$TP,CT$FP,CT$FN,CT$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,CT$TP,CT$FP,CT$FN,CT$TN,B=5)
# These are example commands for illustration. B should be >= 1000.
Korevaar et al. (2015)'s data of minimally invasive markers for detection of airway eosinophilia in asthma
Description
-
TP: A vector of the number of true positives (TP) -
FP: A vector of the number of false positives (FP) -
FN: A vector of the number of false negatives (FN) -
TN: A vector of the number of true negatives (TN)
Usage
data(asthma)
Format
A data frame with 12 rows and 4 variables
References
Korevaar, D. A., Westerhof, G. A., Wang, J., et al. (2015). Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respiratory Medicine. 3: 290-300. doi:10.1016/S2213-2600(15)00050-8
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Scheidler et al. (1997)'s cervical cancer data
Description
-
id: identification number -
author: The first author name of the corresponding study -
year: The published year of the corresponding study -
method: The diagnostic method; 1=CT (computed tomography), 2=LAG (lymphangiography), 3=MRI (magnetic resonance imaging) -
TP: A vector of the number of true positives (TP) -
FP: A vector of the number of false positives (FP) -
FN: A vector of the number of false negatives (FN) -
TN: A vector of the number of true negatives (TN)
Usage
data(cervical)
Format
A data frame with 44 rows and 8 variables
References
Scheidler, J., Hricak, H., Yu, K. K., Subak, L., and Segal, M. R. (1997). Radiological evaluation of lymph node metastases in patients with cervical cancer. A meta-analysis. JAMA 278: 1096-1101.
Reitsma, J. B., Glas, A. S., Rutjes, A. W., Scholten, R. J., Bossuyt, P. M., and Zwinderman, A. H. (2005). Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology 58: 982-990. doi:10.1016/j.jclinepi.2005.02.022
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408