Package 'elfgen'

November 28, 2025

ological Limit Function Model Generation and Analysis Toolkit 2.3.4 er Connor Brogan <connor.brogan@deq.virginia.gov> on A toolset for generating Ecological Limit Function (ELF) models and evaluating poten-</connor.brogan@deq.virginia.gov>
er Connor Brogan <connor.brogan@deq.virginia.gov></connor.brogan@deq.virginia.gov>
on A toolset for generating Ecological Limit Function (ELF) models and evaluating poten-
species loss resulting from flow change, based on the 'elfgen' framework. ELFs debe the relation between aquatic species richness (fish or benthic macroinvertetes) and stream size characteristics (streamflow or drainage area). Journal publicates are available outlining framework methodology (Kleiner et al. (2020) <doi:10.1111 1752-188.12876="">) and application (Rapp et al. (2020) <doi:10.1111 1752-1688.12877="">).</doi:10.1111></doi:10.1111>
utils, stringr, quantreg, stats, ggplot2, testit, scales, ff, curl, sbtools, nhdplusTools
MIT + file LICENSE
tps://github.com/HARPgroup/elfgen
Note 7.3.2
testthat ($\geq 2.1.0$)
mpilation no
oseph Kleiner [aut] (ORCID: https://orcid.org/0000-0003-4837-7678), pert Burgholzer [ctb] (ORCID: https://orcid.org/0000-0001-9377-1805), purchase [cre] (ORCID: https://orcid.org/0000-0001-9377-1805)
ry CRAN
dication 2025-11-28 09:50:12 UTC
nts
bkpt_pwit

2 bkpt_pwit

Index 10

bkpt_pwit	Identify breakpoint location with PWIT

Description

This applies the Piecewise Iterative elfgen method. This approach uses an iterative algorithm to identify shifts in the relation between maximum richness and stream size. A user specifies a "quantile" for isolating an upper subset of the data. A user also identifies a bounding range between two x-values ("blo" = "bound low", "bhi" = "bound high") in which the upper subset of data is believed to contain a breakpoint. (Note: Small datasets may not contain a breakpoint)

Usage

```
bkpt_pwit(watershed.df, quantile, blo, bhi)
```

Arguments

watershed.df A dataframe of sites with ecological and hydrologic data

quantile Specified value for the quantile of interest - 0.95 refers to the 95th percentile

blo A "bound low" value, or the lower bound of the piecewise range

bhi A "bound high" value, or the upper bound of the piecewise range

Details

See: Lemoine, N. 2012. "R for Ecologists: Putting Together a Piecewise Regression." https://www.r-bloggers.com/r-for-ecologists-putting-together-a-piecewise-regression/ The R Book, Second Edition. Michael J. Crawley. 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

Value

Breakpoint value is returned

Examples

```
# We don't run this example by R CMD check, because it takes >10s
watershed.df <- elfdata(watershed.code = '0208020104',
   ichthy.localpath = tempdir(), use_cache = FALSE)
bkpt_pwit(watershed.df,0.85,100,300)</pre>
```

bkpt_ymax 3

bkpt_ymax

Identify breakpoint location with Ymax

Description

This applies the Ymax elfgen method. This approach treats the maximum observed species richness value as the breakpoint. This function begins by locating the point with the highest y-value in the full dataset, then utilizing the associated x-value as the breakpoint.

Usage

```
bkpt_ymax(watershed.df)
```

Arguments

watershed.df A dataframe of sites with ecological and hydrologic data

Value

Breakpoint value is returned

Examples

```
# We don't run this example by R CMD check, because it takes >10s
watershed.df <- elfdata(watershed.code = '0208020104',
   ichthy.localpath = tempdir(), use_cache = FALSE)
bkpt_ymax(watershed.df)</pre>
```

clean_vahydro

Clean dataset of ecological and hydrologic data

Description

Given a dataframe of flow metric and richness metric data (Typically retrieved from the DEQ VAHydro database), removes all sites where the ratio of Drainage Area:Mean Annual Flow is greater than 1000, also aggregates to the maximum richness value at each x-metric value

Usage

```
clean_vahydro(watershed.df)
```

Arguments

watershed.df A dataframe of sites with ecological and hydrologic data

4 elfchange

Value

A cleaned dataframe of sites with ecological and hydrologic data

Examples

```
# We don't run this example by R CMD check, because it takes >10s

# Retrieve dataset of interest
watershed.df <- data.frame(
    MAF = c(100, 200, 300, 400, 526, 600, 700, 800, 400, 900, 1000, 100, 100),
    NT.TOTAL.UNIQUE = c(10, 20, 30, 40, 50, 40, 30 , 20, 50, 10, 10,99999,87),
    watershed.code = "test_testcode",
    hydrocode = c("t1","t2","t3","t4","t5","t6","t7","t8","t9","t10","t11","t12","t13"),
    DA_SQMI = c(110, 220000, 280, 360, 530, 604, 712, 698, 40000, 905, 1087, 98, 87),
    x.metric = c(100, 200, 300, 400, 526, 600, 700, 800, 400, 900, 1000, 100, 100)
    )

# Clean the dataset
clean_vahydro(watershed.df)</pre>
```

elfchange

Plot percent richness change for various percent flow reductions

Description

Calculates and plots percent richness change resulting from streamflow reductions

Usage

```
elfchange(stats, yaxis_thresh, xlabel = FALSE, ylabel = FALSE)
```

Arguments

stats A dataframe of ELF statistics

yaxis_thresh Value used for specifying y-axis max limit

xlabel Used to overwrite default x-axis label

ylabel Used to overwrite default y-axis label

Value

Plot of percent decreases in richness from flow reductions

elfdata 5

Examples

```
# We don't run this example by R CMD check, because it takes >10s
# Generate plot of percent richness change for various percent flow reductions
watershed.df <- elfdata(watershed.code = '0208020104',
    ichthy.localpath = tempdir(), use_cache = FALSE)
breakpt <- 500
elf <- elfgen(
    "watershed.df" = watershed.df,
    "quantile" = 0.95,
    "breakpt" = breakpt,
    "xlabel" = "Mean Annual Flow (ft3/s)",
    "ylabel" = "Fish Species Richness"
    )
elfchange(elf$stats, "yaxis_thresh" = 25)</pre>
```

elfdata

Retrieve and format data for ELF generation

Description

Given a HUC code, provides a dataframe of all contained nhdplus segments and their individual NT Total and Mean Annual Flow MAF values

Usage

```
elfdata(
  watershed.code,
  ichthy.localpath,
  use_cache = TRUE,
  update_cache = FALSE
)
```

Arguments

watershed.code Hydrologic unit code, either HUC6, HUC8, HUC10, or HUC12 (e.g. HUC10 code '0208020101').

ichthy.localpath

Local file path for storing downloaded ichthy data. Defaults to a temp directory.

use_cache

Should the function look for a file with the same name in the file directory? This allows users to use the same Icthy dataset each time rather than needing to

download separately when running multiple analyses

update_cache Should the

Should the file be written out to use for future caching?

Value

A dataframe of nhdplus segments containing species richness data (NT Total values) and mean annual flow (MAF) data.

6 elfdata_vahydro

Examples

```
# We don't run this example by R CMD check, because it takes >10s

# Retrieve dataset of interest
# You may enter either a 6, 8, 10, or 12-digit HUC code.
# By default the ichthy dataset is downloaded to a temp directory, however this may be overridden by
# supplying a local path of interest using the input parameter 'ichthy.localpath'
watershed_df <- elfdata(watershed.code = '0208020104',
    ichthy.localpath = tempdir(), use_cache = FALSE)
head(watershed_df)</pre>
```

elfdata_vahydro

Retrieve data from DEQ VAHydro database and format data for ELF generation. Contact Virginia DEQ Office of Water Supply to request access to the VAHydro database.

Description

Given a set of VAHydro input parameters, outputs a dataframe of flow metric and richness metric data for hydrologic unit supplied

Usage

```
elfdata_vahydro(
  watershed.code,
  watershed.bundle,
  watershed.ftype,
  x.metric,
  y.metric,
  y.sampres,
  datasite,
  EDAS.localpath = tempdir()
)
```

Arguments

```
watershed.code Hydrologic unit code, either HUC6, HUC8, HUC10, or HUC12 (e.g. HUC10 code '0208020101').

watershed.bundle dH bundle of hydrologic unit

watershed.ftype dH ftype of hydrologic unit

x.metric x-metric, i.e. streamflow or drainage area

y.metric y-metric, most commonly species richness

y.sampres Sample resolution of y.metric (e.g. 'species')

datasite VAHydro database URL

EDAS.localpath Local file path for storing downloaded EDAS data. Defaults to a temp directory.
```

elfgen 7

Value

A dataframe of sites containing species richness data (NT Total values) and mean annual flow (MAF) data.

Examples

```
# We don't run this example by R CMD check, because it takes >10s
# Retrieve dataset of interest
watershed.df <- elfdata_vahydro(
   'nhd_huc8_02080201',
   'watershed',
   'nhd_huc8',
   'nhdp_drainage_sqmi',
   'aqbio_nt_total',
   'species'
   )
elfdata_vahydro(watershed.df)</pre>
```

elfgen

Generate Ecological Limit Function (ELF)

Description

Generate ELF models by supplying a dataframe of richness and stream size data (streamflow or drainage area), a quantile for evaluating the ecological limit, and a breakpoint threshold.

Usage

```
elfgen(
  watershed.df,
  quantile,
  breakpt,
  yaxis_thresh,
  xlabel = FALSE,
  ylabel = FALSE,
  plot_title = FALSE,
  break_var = "x_var"
)
```

Arguments

watershed.df A dataframe of sites with ecological and hydrologic data

quantile A specified value for the quantile of interest - 0.95 equals the 95th percentile

breakpt A breakpoint - either user-supplied fixed value or derived using elfgen break-

point functions bkpt_pwit() or bkpt_ymax

8 richness_change

yaxis_thresh	Value used for specifying y-axis max limit
xlabel	Used to overwrite default x-axis label
ylabel	Used to overwrite default y-axis label
plot_title	A plot title used to title the ggplot. If left as the default (FALSE), the plot will be titled using the name of the HUC from nhdPlus
break_var	The name of the variable in watershed.df to be filtered for by the breakpt, defaults to the expected name "x_var"

Value

Object containing plot image and dataframe of ELF statistics

Examples

```
# We don't run this example by R CMD check, because it takes >10s
watershed.df <- elfdata(watershed.code = '0208020104',
  ichthy.localpath = tempdir(), use_cache = FALSE)
breakpt <- 500
elfgen(
  "watershed.df" = watershed.df,
  "quantile" = 0.80,
  "breakpt" = breakpt,
  "xlabel" = "Mean Annual Flow (ft3/s)",
  "ylabel" = "Fish Species Richness"
)</pre>
```

richness_change

Calculate change in richness resulting from a percent reduction in flow

Description

Calculates absolute or percent richness change from streamflow reduction

Usage

```
richness_change(stats, pctchg, xval = FALSE)
```

Arguments

stats	A dataframe of ELF statistics	
pctch	Decrease in flow as a percent (e.g. 10 equals 10 percent reduction in flow).	
xval	x-axis value for assessing percent change in richness. When supplied, the fur	
	tion will calculate percent change in richness at a specific stream size (e.g.	50
	equals a stream size with mean annual flow of 50 cfs).	

richness_change 9

Value

Richness change value is returned

Examples

```
# We don't run this example by R CMD check, because it takes >10s
watershed.df <- elfdata(watershed.code = '0208020104',
   ichthy.localpath = tempdir(), use_cache = FALSE)
breakpt <- 500
elf <- elfgen(
   "watershed.df" = watershed.df,
   "quantile" = 0.95,
   "breakpt" = breakpt,
   "xlabel" = "Mean Annual Flow (ft3/s)",
   "ylabel" = "Fish Species Richness"
   )
# Calculate absolute richness change
richness_change(elf$stats, "pctchg" = 10)
# Calculate percent richness change at a specific stream size
richness_change(elf$stats, "pctchg" = 10, "xval" = 50)</pre>
```

Index

```
bkpt_pwit, 2
bkpt_ymax, 3

clean_vahydro, 3

elfchange, 4
elfdata, 5
elfdata_vahydro, 6
elfgen, 7

richness_change, 8
```