## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(emery) set.seed(65123) ## ----simulate binary data----------------------------------------------------- ex_bin_data <- generate_multimethod_data( type = "binary", n_method = 3, n_obs = 200, se = c(0.85, 0.90, 0.95), sp = c(0.95, 0.90, 0.85), method_names = c("alpha", "beta", "gamma") ) ex_bin_data$generated_data[98:103, ] ## ----------------------------------------------------------------------------- ex_bin <- estimate_ML( type = "binary", data = ex_bin_data$generated_data, init = list(prev_1 = 0.8, se_1 = c(0.7, 0.8, 0.75), sp_1 = c(0.85, 0.95, 0.75)) ) ex_bin ## ----fig.width=7, fig.height=4------------------------------------------------ plot(ex_bin) ## ----fig.width=7, fig.height=4------------------------------------------------ plot(ex_bin, params = ex_bin_data$params) ## ----------------------------------------------------------------------------- pmf_pos_ex <- matrix( c( c(0.05, 0.10, 0.15, 0.30, 0.40), c(0.00, 0.05, 0.20, 0.25, 0.50), c(0.10, 0.15, 0.20, 0.25, 0.30) ), nrow = 3, byrow = TRUE ) pmf_pos_ex ## ----------------------------------------------------------------------------- pmf_neg_ex <- pmf_pos_ex[, 5:1] ## ----------------------------------------------------------------------------- ex_ord_data <- generate_multimethod_data( type = "ordinal", n_method = 3, n_obs = 200, pmf_pos = pmf_pos_ex, pmf_neg = pmf_neg_ex, method_names = c("alice", "bob", "carrie"), level_names = c("strongly dislike", "dislike", "neutral", "like", "strongly like") ) ex_ord_data$generated_data[98:103, ] ## ----------------------------------------------------------------------------- ex_ord <- estimate_ML( type = "ordinal", data = ex_ord_data$generated_data, level_names = ex_ord_data$params$level_names ) ex_ord ## ----fig.width=7, fig.height=4------------------------------------------------ plot(ex_ord, params = ex_ord_data$params) ## ----------------------------------------------------------------------------- ex_con_data <- generate_multimethod_data( type = "continuous", n_method = 3, n_obs = 200, method_names = c("phi", "kappa", "sigma") ) ex_con_data$generated_data[98:103, ] ## ----------------------------------------------------------------------------- ex_con <- estimate_ML( type = "continuous", data = ex_con_data$generated_data ) ex_con ## ----fig.width=7, fig.height=4------------------------------------------------ plot(ex_con, params = ex_con_data$params) ## ----------------------------------------------------------------------------- ex_boot_bin <- boot_ML( type = "binary", data = ex_bin_data$generated_data, n_boot = 20 ) # print the estimates of sensitivity from the complete data set ex_boot_bin$v_0@results$se_est # print the first 3 bootstrap estimates of sensitivity ex_boot_bin$v_star[[1]]$se_est ex_boot_bin$v_star[[2]]$se_est ex_boot_bin$v_star[[3]]$se_est