## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE, eval=FALSE----------------------------------------- # library(extraSuperpower) ## ----package loading---------------------------------------------------------- library(extraSuperpower) ## ----------------------------------------------------------------------------- ## outcome mean in reference group at baseline is 10 ## a control group and an intervention group will be compared over 3 timepoints ## all measurements are independent refmean <- 10 Alevs <- 2 Blevs <- 3 fAeff <- 1.5 fBeff <- 0.8 ## if you do not provide a list with names of factors and levels, factor names are to "fA" and "fB" and level names are set to 'letters[1:nlfA]' and 'letters[1:nlfB]'. Alevelnames <- c("control", "intervention") Blevelnames <- 1:Blevs nameslist <- list("Group" = Alevelnames, "Time" = Blevelnames) simple_twoway <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs, fAeffect = fAeff, fBeffect = fBeff, label_list = nameslist) ## ----fig.asp=0.8, fig.width=8------------------------------------------------- ##labelling factors and their levels is convenient simple_twoway ## ----fig.asp=0.8, fig.width=8------------------------------------------------- simple_twoway_sdadjusted <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs, fAeffect = fAeff, fBeffect = fBeff, sdproportional = FALSE, sdratio = 0.1, label_list = nameslist) simple_twoway_sdadjusted ## ----fig.asp=0.8, fig.width=8------------------------------------------------- #intervention group is the second row in the means matrix, times 2 and 3 the 2nd and 3rd columns. cellsinteraction <- c(2, 2, 2, 3) cellsinteraction <- matrix(cellsinteraction, 2, 2) interaction_twoway <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs, fAeffect = fAeff, fBeffect = fBeff, groupswinteraction = cellsinteraction, interact = 0.7, label_list = nameslist) interaction_twoway ## ----fig.asp=0.8, fig.width=8------------------------------------------------- #Let's suppose within subject correlation is 0.7 rho <- 0.7 interaction_twoway_timewithin <- calculate_mean_matrix(refmean = refmean, nlfA = Alevs, nlfB = Blevs, fAeffect = fAeff, fBeffect = fBeff, groupswinteraction = cellsinteraction, interact = 0.7, rho = rho, withinf = "fB", label_list = nameslist) interaction_twoway_timewithin ## ----------------------------------------------------------------------------- iterations <- 50 set.seed(170824) n <- seq(6, 12, 3) indepmeasures_normal_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway, nset = n, distribution = "normal", nsims = iterations) length(indepmeasures_normal_sim) length(n) ## ----------------------------------------------------------------------------- indepmeasures_skewed_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway, nset = n, distribution = "skewed", skewness = 2, nsims = iterations) ## ----normally distributed repeated measures simulation------------------------ repmeasures_normal_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway_timewithin, nset = n, repeated_measurements = TRUE, nsims = iterations) ## ----skewed repeated measures simulation-------------------------------------- repmeasures_skewed_sim <- simulate_twoway_nrange(matrices_obj = interaction_twoway_timewithin, nset = n, repeated_measurements = TRUE, distribution = "skewed", skewness=2, nsims = iterations) ## ----fig.asp=0.8, fig.width=8------------------------------------------------- test_power_overkn(indepmeasures_normal_sim) ## ----fig.asp=0.8, fig.width=8------------------------------------------------- test_power_overkn(indepmeasures_skewed_sim) ## ----fig.asp=0.8, fig.width=8------------------------------------------------- test_power_overkn(indepmeasures_skewed_sim, test = "rank") ## ----fig.asp=0.8, fig.width=8------------------------------------------------- test_power_overkn(repmeasures_normal_sim) ## ----testing power repeated measures normally distributed simulation, fig.asp=0.8, fig.width=8, warning=FALSE, message=FALSE---- test_power_overkn(repmeasures_normal_sim, test = "rank") ## ----repeated measures skewed distribution power testing with ANOVA, fig.asp=0.8, fig.width=8---- test_power_overkn(repmeasures_skewed_sim) ## ----repeated measures skewed distribution power testing with rank, fig.asp=0.8, fig.width=8, warning=FALSE---- test_power_overkn(repmeasures_skewed_sim, test = "rank")