Package ‘gdata’

October 22, 2024
Version 3.0.1
Date 2024-10-22
Title Various R Programming Tools for Data Manipulation
Imports gtools, methods, stats, utils
Suggests RUnit

Description Various R programming tools for data manipulation, including
medical unit conversions, combining objects, character vector operations,
factor manipulation, obtaining information about R objects, generating
fixed-width format files, extracting components of date & time objects,
operations on columns of data frames, matrix operations, operations on
vectors, operations on data frames, value of last evaluated expression, and a
resample() wrapper for sample() that ensures consistent behavior for both
scalar and vector arguments.

License GPL-3
URL https://github.com/r-gregmisc/gdata

BugReports https://github.com/r-gregmisc/gdata/issues
NeedsCompilation no

Author Gregory R. Warnes [aut],
Gregor Gorjanc [aut],
Arni Magnusson [aut, cre],
Liviu Andronic [aut],
Jim Rogers [aut],
Don MacQueen [aut],
Ales Korosec [aut],
Ben Bolker [ctb],
Michael Chirico [ctb],
Gabor Grothendieck [ctb],
Thomas Lumley [ctb],
Brian Ripley [ctb],
inoui llc [fnd]

Maintainer Arni Magnusson <thisisarni@gmail.com>
Repository CRAN
Date/Publication 2024-10-22 04:30:02 UTC

https://github.com/r-gregmisc/gdata
https://github.com/r-gregmisc/gdata/issues

2 Contents

Contents
gdata-package 3
ANS & o v e e e e e e e e e e e e e e e 4
ATES . o e 5
bindData e e 6
CASE v v v e e e e e e e e e e e e e e e e e e 7
chindX 8
centerTeXt e e e e e e e e e 9
combine e e e 10
ConvertMedUnits e e e e e e 11
droplevels e 13
duplicated2 e e 14
NV . o o i i e e e e e e e e e e e 15
first . . . e e 16
frameApply e e 17
gdata-defunct 19
getYear e 19
humanReadable 21
interleave L e e e e 23
iIs.what e e e e 25
keep e 26
left . . e e e e 27
I e e e 28
Isfuns e e e 30
maplevels 31
matchcols e 33
MedUnits e e e e e e e e 35
MV . o ot e e e e e e e e e e e e e e e e e 36
1 170] o 37
nPairs e e 38
ODJECE_SIZE o e e e e 40
TENAME.VATS . . . v b v b v e e e e e e e e e e e e e e e 42
reorder.factor 43
resample L e e e e e e e 44
startsWith e e 45
M . . . e e e e e e e e e e e e e e e e e 46
trimSUmM e e e e e e e e 48
unknownToNA e 49
UNMALTIX . . . o o e o e 51
update.list L e 52
upperTriangle L. 53
wideByFactor 55
write. fwf e e 56

Index 61

gdata-package 3

gdata-package Various R Programming Tools for Data Manipulation

Description

Various R programming tools for data manipulation, including:

¢ Medical unit conversions: ConvertMedUnits, MedUnits

* Combining objects: link{bindData}, cbindX, combine, interleave
 Character vector operations: centerText, startsWith, trim

* Factor manipulation: levels, reorder.factor, mapLevels

* Obtaining information about R objects: object_size, env, humanReadable, is.what, 11,
keep, 1s.funs, Args, nPairs, nobs

* Generating fixed-width format files: write. fwf

» Extracting components of date & time objects: getYear, getMonth, getDay, getHour, getMin,
getSec

* Operations on columns of data frames: matchcols, rename.vars

* Matrix operations: unmatrix, upperTriangle, lowerTriangle

* Operations on vectors: case, unknownToNA, duplicated2, trimSum
* QOperations on data frames: frameApply, wideByFactor

* Value of last evaluated expression: ans

* Wrapper for sample that ensures consistent behavior for both scalar and vector arguments:
resample

Note

browseVignettes() shows package vignettes.

Author(s)

Gregory R. Warnes, Gregor Gorjanc, Arni Magnusson, Liviu Andronic, Jim Rogers, Don Mac-
Queen, and Ales Korosec, with contributions by Ben Bolker, Michael Chirico, Gabor Grothendieck,
Thomas Lumley, and Brian Ripley.

ans

ans

Value of Last Evaluated Expression

Description

The functon returns the value of the last evaluated top-level expression, which is always assigned to
.Last.value (in package:base).

Usage

ans()

Details

This function retrieves .Last.value. For more details see .Last.value.

Value

.Last.value

Author(s)

Liviu Andronic

See Also

.Last.value, eval

Examples

2+2
ans()

gamma(1:15)
facl4 <- ans()

rnorm(20)
ans()"2
stem(ans())

Trivial calculation
See the answer again

Some intensive calculation
store the results into a variable

Generate some standard normal values
Convert to Chi-square(1) values
Now show a stem-and-leaf table

Args 5

Args Describe Function Arguments

Description

Display function argument names and corresponding default values, formatted in two columns for
easy reading.

Usage

Args(name, sort=FALSE)

Arguments

name a function or function name.

sort whether arguments should be sorted.
Value

A data frame with named rows and a single column called value, containing the default value of
each argument.
Note

Primitive functions like sum and all have no formal arguments. See the formals help page.

Author(s)

Arni Magnusson

See Also

Args is a verbose alternative to args, based on formals.

help also describes function arguments.

Examples

Args(glm)
Args(scan)
Args(legend, sort=TRUE)

6 bindData

bindData Bind two data frames into a multivariate data frame

Description

Usually data frames represent one set of variables and one needs to bind/join them for multivariate
analysis. When merge is not the approriate solution, bindData might perform an appropriate bind-
ing for two data frames. This is especially usefull when some variables are measured once, while
others are repeated.

Usage

bindData(x, y, common)

Arguments

X data.frame

y data.frame

common character, list of column names that are common to both input data frames
Details

Data frames are joined in a such a way, that the new data frame has ¢+ (n; —¢) + (n2 — ¢) columns,
where c¢ is the number of common columns, and n; and no are the number of columns in the first
and in the second data frame, respectively.

Value

A data frame.

Author(s)

Gregor Gorjanc

See Also

merge, wideByFactor

Examples
nlt <- 6
n2 <- 12
n3 <- 4

Single trait 1

num <- c(5:n1, 10:13)

(tmp1 <- data.frame(yl=rnorm(n=n1),
f1=factor(rep(c("A", "B"), nl1/2)),
ch=letters[num],

case

fa=factor(letters[num]),
nu=(num) + 0.5,
id=factor(num), stringsAsFactors=FALSE))

Single trait 2 with repeated records, some subjects also in tmp1
num <- 4:9
(tmp2 <- data.frame(y2=rnorm(n=n2),
f2=factor(rep(c("C", "D"), n2/2)),
ch=letters[rep(num, times=2)],
fa=factor(letters[rep(c(num), times=2)1),
nu=c((num) + 0.5, (num) + @.25),
id=factor(rep(num, times=2)), stringsAsFactors=FALSE))

Single trait 3 with completely distinct set of subjects
num <- 1:4
(tmp3 <- data.frame(y3=rnorm(n=n3),
f3=factor(rep(c("E", "F"), n3/2)),
ch=letters[num],
fa=factor(letters[num]),
nu=(num) + 0.5,
id=factor(num), stringsAsFactors=FALSE))

Combine all datasets
(tmp12 <- bindData(x=tmp1, y=tmp2, common=c("”id”, "nu"”, "ch”, "fa")))
(tmp123 <- bindData(x=tmp12, y=tmp3, common=c("id"”, "nu", "ch", "fa")))

Sort by subject
tmp123[order(tmp123%$ch), 1

case Map elements of a vector according to the provided ’cases’

Description

Map elements of a vector according to the provided ’cases’. This function is useful for mapping
discrete values to factor labels and is the vector equivalent to the switch function.

Usage
case(x, ..., default = NA)
Arguments
X Vector to be converted
Map of alternatives, specified as "name"=value
default Value to be assigned to elements of x not matching any of the alternatives. De-

faults to NA.

8 cbindX

Details

This function is to switch what ifelse is to if, and is a convenience wrapper for factor.

Value
A factor variables with each element of x mapped into the corresponding level of specified in the
mapping.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

factor, switch, ifelse

Examples
default = NA
Case(c(1,1,4,3), "a”=1, nbu=2’ nCu=3)

default = "foo”
case(c(1,1,4,3), "a"=1, "b"=2, "c"=3, default="foo")

cbindX Column-bind objects with different number of rows

Description

cbindX column-binds objects with different number of rows.

Usage
cbindX(...)

Arguments

matrix and data.frame objects

Details
First the object with maximal number of rows is found. Other objects that have less rows get (via
rbind) additional rows with NA values. Finally, all objects are column-binded (via cbind).

Value

See details.

centerText 9

Author(s)

Gregor Gorjanc

See Also

Regular cbind and rbind

Examples

df1 <- data.frame(a=1:3, b=c("A", "B", "C"))
df2 <- data.frame(c=as.character(1:5), a=5:1)

mal <- matrix(as.character(1:4), nrow=2, ncol=2)
ma2 <- matrix(1:6, nrow=3, ncol=2)

cbindX(df1, df2)
cbindX(mal, ma2)
cbindX(df1, mal)
cbindX(df1, df2, mal, ma2)
cbindX(mal, ma2, df1, df2)

centerText Center Text Strings

Description

Function to center text strings for display on the text console by prepending the necessary number
of spaces to each element.

Usage

centerText(x, width = getOption("width"))

Arguments

X Character vector containing text strings to be centered.

width Desired display width. Defaults to the R display width given by getOption("width").
Details

Each element will be centered individually by prepending the necessary number of spaces to center
the text in the specified display width assuming a fixed width font.

Value

Vector of character strings.

10 combine

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

strwrap

Examples

cat(centerText("One Line Test”), "\n\n")

mText <-c("This”, "is an example”,

n n

of a multiline text ,
"with ",
" leading”,

and trailing "
"spaces.")

cat("\n", centerText(mText), "\n”, sep="\n")

n

combine Combine R Objects With a Column Labeling the Source

Description

Take a sequence of vector, matrix or data frames and combine into rows of a common data frame
with an additional column source indicating the source object.

Usage
combine(..., names=NULL)
Arguments
vectors or matrices to combine.
names character vector of names to use when creating source column.
Details

If there are several matrix arguments, they must all have the same number of columns. The number
of columns in the result will be one larger than the number of columns in the component matrixes.
If all of the arguments are vectors, these are treated as single column matrixes. In this case, the
column containing the combineinated vector data is labeled data.

When the arguments consist of a mix of matrices and vectors the number of columns of the result is
determined by the number of columns of the matrix arguments. Vectors are considered row vectors
and have their values recycled or subsetted (if necessary) to achieve this length.

The source column is created as a factor with levels corresponding to the name of the object from
which the each row was obtained. When the names argument is ommitted, the name of each object
is obtained from the specified argument name in the call (if present) or from the name of the object.
See below for examples.

ConvertMedUnits

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

rbind, merge

Examples

a <- matrix(rnorm(12),ncol=4,nrow=3)

b <-1:4
combine(a,b)

combine(x=a,b)
combine(x=a,y=b)

combine(a,b,names=c("one","two"))

c <-1:6
combine(b,c)

11

ConvertMedUnits

Convert medical measurements between International Standard (SI)
and US ’Conventional’ Units.

Description

Convert Medical measurements between International Standard (SI) and US ’Conventional’ Units.

Usage

ConvertMedUnits(x, measurement, abbreviation,

Arguments

X
measurement
abbreviation
to

exact

to = c("Conventional”, "SI", "US"),
exact = !missing(abbreviation))

Vector of measurement values
Name of the measurement
Measurement abbreviation
Target units

Logicial indicating whether matching should be exact

12 ConvertMedUnits

Details

Medical laboratories and practitioners in the United States use one set of units (the so-called ’Con-
ventional’ units) for reporting the results of clinical laboratory measurements, while the rest of the
world uses the International Standard (SI) units. It often becomes necessary to translate between
these units when participating in international collaborations.

This function converts between SI and US *Conventional’ units.

If exact=FALSE, grep will be used to do a case-insensitive sub-string search for matching measure-
ment names. If more than one match is found, an error will be generated, along with a list of the
matching entries.

Value

Returns a vector of converted values. The attribute "units’ will contain the target units converted.

Author(s)

Gregory R. Warnes <greg@warnes.net>

References

https://globalrph.com/medical/conventional-units-international-units/

See Also

The data set MedUnits provides the conversion factors.

Examples

data(MedUnits)

Show available conversions
MedUnits$Measurement

Convert SI Glucose measurement to 'Conventional' units

GlucoseSI <- c(5, 5.4, 5, 5.1, 5.6, 5.1, 4.9, 5.2, 5.5) # in SI Units
GlucoseUS <- ConvertMedUnits(GlucoseSI, "Glucose”, to="US")
cbind(GlucoseSI, GlucoselUS)

Not run:
See what happens when there is more than one match
ConvertMedUnits(27.5, "Creatin”, to="US")

End(Not run)

To solve the problem do:
ConvertMedUnits(27.5, "Creatinine”, to="US", exact=TRUE)

https://globalrph.com/medical/conventional-units-international-units/

drop.levels 13

drop.levels Drop unused factor levels

Description

Drop unused levels in a factor

Usage
drop.levels(x, reorder=TRUE, ...)
Arguments
X object to be processed
reorder should factor levels be reordered using reorder.factor?
additional arguments to reorder . factor
Details

drop.levels is a generic function, where default method does nothing, while method for factor s
drops all unused levels. Drop is done with x[, drop=TRUE].

There are also convenient methods for 1ist and data. frame, where all unused levels are dropped
in all factors (one by one) in a list or a data. frame.
Value

Input object without unused levels.

Author(s)

Jim Rogers <james.a.rogers@pfizer.com> and Gregor Gorjanc

Examples

f <_ factor(C(HAn, ”B”, HCH’ ’,D"))[1:3]
drop.levels(f)

1 <= list(f=f, i=1:3, c=c("A", "B", "D"))
drop.levels(l)

df <- as.data.frame(l)
str(df)
str(drop.levels(df))

14 duplicated?2

duplicated2 Determine Duplicate Elements

Description

duplicated2() determines which elements of a vector or data frame are duplicates, and returns a
logical vector indicating which elements (rows) are duplicates.

Usage
duplicated2(x, bothWays=TRUE, ...)
Arguments
X a vector or a data frame or an array or NULL.
bothWays if TRUE (the default), duplication should be considered from both sides. For
more information see the argument fromLast to the function duplicated.
further arguments passed down to duplicated() and its methods.
Details

The standard duplicated function (in package: base) only returns TRUE for the second and follow-
ing copies of each duplicated value (second-to-last and earlier when fromLast=TRUE). This function
returns all duplicated elements, including the first (last) value.

When bothWays is FALSE, duplicated2() defaults to a duplicated call. When bothWays is TRUE,
the following call is being executed: duplicated(x, ...) | duplicated(x, fromLast=TRUE,

)
Value

For a vector input, a logical vector of the same length as x. For a data frame, a logical vector with
one element for each row. For a matrix or array, and when MARGIN = @, a logical array with the same
dimensions and dimnames.

For more details see duplicated.

Author(s)

Liviu Andronic

See Also

duplicated, unique

Examples

iris[duplicated(iris), 1] # 2nd duplicated value
iris[duplicated(iris, fromLast=TRUE),] # 1st duplicated value
iris[duplicated2(iris), 1] # both duplicated values

env 15

env Describe All Loaded Environments

Description

Display name, number of objects, and size of all loaded environments.

Usage

env(unit="KB", digits=0)

Arguments
unit unit for displaying environment size: "bytes", "KB", "MB", or first letter.
digits number of decimals to display when rounding environment size.

Value

A data frame with the following columns:

Environment environment name.

Objects number of objects in environment.

KB environment size (see notes).
Note

The name of the environment size column is the same as the unit used.

Author(s)

Arni Magnusson

See Also

env is a verbose alternative to search.

11 is a related function that describes objects in an environment.

Examples

Not run:
env()

End(Not run)

16 first

first Return first or last element of an object

Description

Return first or last element of an object. These functions are convenience wrappers for head(x,

n=1, ...) and tail(x, n=1, ...).
Usage
first(x, n=1, ...)
last(x, n=1, ...)
first(x, n=1, ...) <- value
last(x, n=1, ...) <- value
Arguments
X data object
n a single integer. If positive, size for the resulting object: number of elements for

a vector (including lists), rows for a matrix or data frame or lines for a function.
If negative, all but the 'n’ last/first number of elements of *x’.

arguments to be passed to or from other methods.

value a vector of values to be assigned (should be of length n)

Value

An object (usually) like *x’ but generally smaller.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

head, tail, left, right

Examples

Vector
v <-1:10
first(v)
last(v)

first(v) <- 9
v

last(v) <- 20
v

frameApply 17

List
1 <- list(a=1, b=2, c=3)
first(l)
last(l)

first(l) <- "apple”
last(l) <- "banana”
1

Data frame

df <- data.frame(a=1:2, b=3:4, c=5:6)
first(df)

last(df)

first(df) <- factor(c("red”,"green"))
last(df) <- list(c(20,30)) # note the enclosing list!
df

Matrix

m <- as.matrix(df)
first(m)

last(m)

first(m) <- "z"
last(m) <- "qg"
m

frameApply Subset analysis on data frames

Description

Apply a function to row subsets of a data frame.

Usage
frameApply(x, by=NULL, on=by[1], fun=function(xi) c(Count=nrow(xi)),
subset=TRUE, simplify=TRUE, byvar.sep="\\$\\@\\$", ...)
Arguments
X a data frame
by names of columns in x specifying the variables to use to form the subgroups.

None of the by variables should have the name "sep" (you will get an error if
one of them does; a bit of laziness in the code). Unused levels of the by variables
will be dropped. Use by = NULL (the default) to indicate that all of the data is to
be treated as a single (trivial) subgroup.

18

on

fun

subset

simplify

byvar.sep

Details

frameApply

names of columns in x specifying columns over which fun is to be applied.
These can include columns specified in by, (as with the default) although that is
not usually the case.

a function that can operate on data frames that are row subsets of x[on]. If
simplify = TRUE, the return value of the function should always be either a try-
error (see try), or a vector of fixed length (i.e. same length for every subset),
preferably with named elements.

logical vector (can be specified in terms of variables in data). This row subset of
x is taken before doing anything else.

logical. If TRUE (the default), return value will be a data frame including the by
columns and a column for each element of the return vector of fun. If FALSE,
the return value will be a list, sometimes necessary for less structured output
(see description of return value below).

character. This can be any character string not found anywhere in the values
of the by variables. The by variables will be pasted together using this as the
separator, and the result will be used as the index to form the subgroups.

additional arguments to fun.

This function accomplishes something similar to by. The main difference is that frameApply is
designed to return data frames and lists instead of objects of class "by’. Also, frameApply works
only on the unique combinations of the by that are actually present in the data, not on the entire
cartesian product of the by variables. In some cases this results in great gains in efficiency, although
frameApply is hardly an efficient function.

Value

A data frame if simplify = TRUE (the default), assuming there is sufficiently structured output from
fun. If simplify = FALSE and by is not NULL, the return value will be a list with two elements.
The first element, named "by", will be a data frame with the unique rows of x[by], and the second
element, named "result" will be a list where the ith component gives the result for the ith row of the

"by" element.

Author(s)

Jim Rogers <james.a.rogers@pfizer.com>

Examples

data(ELISA, package="gtools")

Default is slightly unintuitive, but commonly useful:
frameApply (ELISA, by = c("PlateDay”, "Read"))

Wouldn't actually recommend this model! Just a demo:
frameApply(ELISA, on = c("Signal”, "Concentration”), by = c("PlateDay”, "Read"),

function(dat) coef(Im(Signal ~ Concentration, data = dat)))

gdata-defunct 19

frameApply(ELISA, on = "Signal”, by = "Concentration”,
fun = function(dat) {
x <- dat[[1]]
out <- c(Mean = mean(x, na.rm=TRUE),
SD = sd(x, na.rm=TRUE),
N = sum(x, na.rm=TRUE))},
subset = !is.na(Concentration))

gdata-defunct Defunct Functions in Package 'gdata’

Description

The functions or variables listed here are no longer part of "gdata’.

Usage
aggregate.table(x, byl, by2, FUN=mean, ...)
Arguments
X data to be summarized.
by1 first grouping factor.
by2 second grouping factor.
FUN a scalar function to compute the summary statistics which can be applied to all
data subsets. Defaults to mean.
optional arguments for FUN.
Details

aggregate.table(x, by1, by2, FUN=mean, ...) should be replaced by tapply (X=x, INDEX=1ist(by1,
by2), FUN=FUN, ...).

getYear Get date/time parts from date and time objects

Description

Experimental approach for extracting the date/time parts from objects of a date/time class. They are
designed to be intiutive and thus lowering the learning curve for work with date and time classes in

R.

20 getYear

Usage
getYear(x, format, ...)
getMonth(x, format, ...)
getDay(x, format, ...)
getHour(x, format, ...)
getMin(x, format, ...)
getSec(x, format, ...)
Arguments
X generic, date/time object
format character, format
arguments pased to other methods
Value
Character
Author(s)

Gregor Gorjanc

See Also

Date, DateTimeClasses, strptime

Examples

Date

tmp <- Sys.Date()
tmp

getYear(tmp)
getMonth(tmp)
getDay (tmp)

POSIXct

tmp <- as.POSIXct(tmp)
getYear(tmp)
getMonth(tmp)

getDay (tmp)

POSIX1t

tmp <- as.POSIX1t(tmp)
getYear(tmp)
getMonth(tmp)

getDay (tmp)

humanReadable 21

humanReadable Print Byte Size in Human Readable Format

Description

Convert integer byte sizes to a human readable units such as kB, MB, GB, etc.

Usage
humanReadable(x, units="auto"”, standard=c("IEC", "SI", "Unix"),
digits=1, width=NULL, sep=" ", justify=c("right”, "left"))
Arguments
X integer, byte size
standard character, "IEC" for powers of 1024 ("MiB’), "SI" for powers of 1000 "MB’),
or "Unix" for powers of 1024 ("M’). See details.
units character, unit to use for all values (optional), one of "auto", "bytes", or an
appropriate unit corresponding to standard.
digits integer, number of digits after decimal point
width integer, width of number string
sep character, separator between number and unit
justify two-element vector specifiy the alignment for the number and unit components
of the size. Each element should be one of "none", "left", "right", or "center"
Details

The basic unit used to store information in computers is a bit. Bits are represented as zeroes and
ones - binary number system. Although, the binary number system is not the same as the decimal
number system, decimal prefixes for binary multiples such as kilo and mega are often used. In
the decimal system kilo represent 1000, which is close to 1024 = 210 in the binary system. This
sometimes causes problems as it is not clear which powers (2 or 10) are used in a notation like 1
kB. To overcome this problem International Electrotechnical Commission (IEC) has provided the
following solution to this problem:

Name System Symbol Size Conversion
byte binary B 23 8 bits
kilobyte decimal kB 103 1000 bytes
kibibyte binary KiB 210 1024 bytes

megabyte decimal ~ MB (10%)2 1000 kilobytes
mebibyte binary MiB (2!°)2 1024 kibibytes
gigabyte decimal GB (10%)° 1000 megabytes
gibibyte binary GiB (219)3 1024 mebibytes
terabyte decimal TB (10%)* 1000 gigabytes
tebibyte binary TiB (210)% 1024 gibibytes

22

petabyte
pebibyte
exabyte
exbibyte
zettabyte
zebibyte
yottabyte
yebibyte

decimal
binary
decimal
binary
decimal
binary
decimal
binary

PB
PiB
EB
EiB
7B
ZiB
YB
YiB

humanReadable

1000 terabytes
1024 tebibytes
1000 petabytes
1024 pebibytes
1000 exabytes
1024 exbibytes
1000 zettabytes
1024 zebibytes

where Zi and Yi are GNU extensions to IEC. To get the output in the decimal system (powers of
1000) use standard="SI". To obtain IEC standard (powers of 1024) use standard="IEC".

In addition, single-character units are provided that follow (and extend) the Unix pattern (use

standard="Unix"):

Name
byte
kibibyte
mebibyte
gibibyte
tebibyte
pebibyte
exbibyte
zebibyte
yottabyte

System
binary
binary
binary
binary
binary
binary
binary
binary
binary

Symbol

“NmUvHQZR®

Size
23
210

210 2
(0y3

)
10)4
10)5
10)6
10)7
)

(2
(2
(2
(2
(2
(210)8

Conversion

8 bits

1024 bytes
1024 kibibytes
1024 mebibytes
1024 gibibytes
1024 tebibytes
1024 pebibytes
1024 exbibytes
1024 zebibytes

For printout both digits and width can be specified. If width is NULL, all values have given
number of digits. If width is not NULL, output is rounded to a given width and formated similar to
human readable format of the Unix 1s, df or du shell commands.

Value

Byte size in human readable format as character with proper unit symbols added at the end of the

string.

Author(s)

Ales Korosec, Gregor Gorjanc, and Gregory R. Warnes <greg@warnes.net>

References

Wikipedia: https://en.wikipedia.org/wiki/Byte https://en.wikipedia.org/wiki/SI_prefix

https://en.wikipedia.org/wiki/Binary_prefix

GNU manual for coreutils: https://www.gnu.org/software/coreutils/manual/html_node/

Block-size.html

https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/SI_prefix
https://en.wikipedia.org/wiki/Binary_prefix
https://www.gnu.org/software/coreutils/manual/html_node/Block-size.html
https://www.gnu.org/software/coreutils/manual/html_node/Block-size.html

interleave 23

See Also

object.size in package ’gdata’, object.size in package ’utils’, 11

Examples

Simple example: maximum addressible size of 32 bit pointer
humanReadable(2"32-1)

humanReadable(2*32-1, standard="IEC")

humanReadable(2”32-1, standard="SI")

humanReadable(2”32-1, standard="Unix")

humanReadable(2”32-1, unit="MiB")
humanReadable(2”32-1, standard="IEC", wunit="MiB")
humanReadable(2*32-1, standard="SI", unit="MB")
humanReadable(2”32-1, standard="Unix", unit="M")

Vector of sizes
matrix(humanReadable(c(60810, 124141, 124, 13412513), width=4))
matrix(humanReadable(c (60810, 124141, 124, 13412513), width=4, unit="KiB"))

Specify digits rather than width
matrix(humanReadable(c (60810, 124141, 124, 13412513), width=NULL, digits=2))

Change the justification
matrix(humanReadable(c (60810, 124141, 124, 13412513), width=NULL,
justify=c("right”, "right")))

interleave Interleave Rows of Data Frames or Matrices

Description

Interleave rows of data frames or matrices.

Usage

interleave(..., append.source=TRUE, sep=": ", drop=FALSE)

Arguments

objects to be interleaved.

append.source boolean flag. When TRUE (the default) the argument name will be appended to
the row names to show the source of each row.

sep separator between the original row name and the object name.

drop boolean flag - when TRUE, matrices containing one column will be converted
to vectors.

24 interleave

Details

This function creates a new matrix or data frame from its arguments.

The new object will have all of the rows from the source objects interleaved. Starting with row 1 of

object 1, followed by row 1 of object 2, ..., row 1 of object 'n’, row 2 of object 1, row 2 of object
2, ...,row 2 of object 'n’, etc.
Value

Matrix containing the interleaved rows of the function arguments.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

cbind, rbind, combine

Examples

Simple example

a <- matrix(1:10,ncol=2,byrow=TRUE)

b <- matrix(letters[1:10],ncol=2,byrow=TRUE)
c <- matrix(LETTERS[1:10],ncol=2,byrow=TRUE)
interleave(a,b,c)

Create a 2-way table of means, standard errors, and nobs
gl <- sample(letters[1:5], 1000, replace=TRUE)

g2 <- sample(LETTERS[1:3], 1000, replace=TRUE)

dat <- rnorm(1000)

stderr <- function(x) sqrt(var(x,na.rm=TRUE) / nobs(x))

means <- tapply(dat, list(gl, g2), mean)
stderrs <- tapply(dat, list(gl, g2), stderr)
ns <- tapply(dat, list(gl, g2), nobs)
blanks <- matrix("” ", nrow=5, ncol=3)

tab <- interleave("Mean"=round(means,?2),
"Std Err”=round(stderrs,2),
"N"zns’ n II:blanks, sep=" Il)
print(tab, quote=FALSE)

Using drop to control coercion to a lower dimensions
ml <- matrix(1:4)
m2 <- matrix(5:8)

interleave(ml, m2, drop=TRUE) # this will be coerced to a vector
interleave(ml, m2, drop=FALSE) # this will remain a matrix

is.what 25

is.what Run Multiple is. * Tests on a Given Object

Description

Run multiple is. * tests on a given object: is.na, is.numeric, and many others.

Usage

is.what(object, verbose=FALSE)

Arguments

object any R object.

verbose whether negative tests should be included in output.
Value

A character vector containing positive tests, or when verbose is TRUE, a data frame showing all test
results.
Note
The following procedure is used to look for valid tests:
1. Find all objects named is. * in all loaded environments.

2. Discard objects that are not functions.

3. Include test result only if it is of class "logical”, not an NA, and of length 1.

Author(s)

Arni Magnusson, inspired by demo(is.things).

See Also

is.naand is.numeric are commonly used tests.

Examples

is.what(pi)

is.what(NA, verbose=TRUE)
is.what(Im(1~1))
is.what(is.what)

26 keep

keep Remove All Objects, Except Those Specified

Description

Remove all objects from the user workspace, except those specified.

Usage
keep(..., list=character(), all=FALSE, sure=FALSE)
Arguments
objects to be kept, specified one by one, quoted or unquoted.
list character vector of object names to be kept.
all whether hidden objects (beginning with a .) should be removed, unless explic-
itly kept.
sure whether to perform the removal, otherwise return names of objects that would
be removed.
Details

Implemented with safety caps: objects whose name starts with a . are not removed unless al1=TRUE,
and an explicit sure=TRUE is required to remove anything.
Value

A character vector containing object names that are deleted if sure=TRUE.

Author(s)

Arni Magnusson

See Also

keep is a convenient interface to rm for removing most objects from the user workspace.

Examples

data(trees, C02)

keep(trees)

To remove all objects except trees, run:
keep(trees, sure=TRUE)

left 27

left Return the leftmost or rightmost columns of a matrix or data frame

Description

Return the leftmost or rightmost or columns of a matrix or data frame

Usage

right(x, n =6L, ...)
left(x, n=6L, ...)

S3 method for class 'matrix'

right(x, n=6L, add.col.nums=TRUE, ...)
S3 method for class 'matrix'
left(x, n=6L, add.col.nums=TRUE, ...)

S3 method for class 'data.frame'

right(x, n=6L, add.col.nums=TRUE, ...)
S3 method for class 'data.frame'
left(x, n=6L, add.col.nums=TRUE, ...)
Arguments
X Matrix or data frame
n If positive, number of columns to return. If negative, number of columns to

omit. See examples.

add.col.nums Logical. If no column names are present, add names giving original column
number. (See example below.)

Additional arguments used by methods

Value

An object consisting of the leftmost or rightmost n columns of x.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

first, last, head, tail

28 1

Examples

m <- matrix(1:100, ncol=10)
colnames(m) <- paste(”Col”,1:10, sep="_")

left(m)
right(m)

When no column names are present, they are added by default
colnames(m) <- NULL

left(m)
colnames(left(m))

right(m)
colnames(right(m))

Prevent addition of column numbers
left(m, add.col.nums = FALSE)
colnames(left(m, add.col.nums = FALSE))

right(m, add.col.nums = FALSE) # columns are labeled 1:6
colnames(right(m, add.col.nums = FALSE)) # instead of 5:10

Works for data frames too!
d <- data.frame(m)

left(d)

right(d)

Use negative n to specify number of columns to omit

left(d, -3)
right(d, -3)
11 Describe Objects or Elements
Description

Display name, class, size, and dimensions of each object in a given environment. Alternatively, if
the main argument is an object, its elements are listed and described.

Usage
11(pos=1, unit="KB", digits=0, dim=FALSE, sort=FALSE, class=NULL,
invert=FALSE, ...)
Arguments
pos environment position number, environment name, data frame, list, model, S4

object, or any object that is.list.

11 29

unit unit for displaying object size: "B", "KB", "MB", "GB", or first letter (case-
insensitive).

digits number of decimals to display when rounding object size.

dim whether object dimensions should be returned.

sort whether elements should be sorted by name.

class character vector for limiting the output to specified classes.

invert whether to invert the class filter, so specified classes are excluded.

passed to 1s.

Value

A data frame with named rows and the following columns:

Class object class.

KB object size (see note).

Dim object dimensions (optional).
Note

The name of the object size column is the same as the unit used.

Author(s)

Arni Magnusson, with contributions by Jim Rogers and Michael Chirico.

See Also

11 is a verbose alternative to 1s (objects in an environment), names (elements in a list-like object),
and slotNames (S4 object).

str and summary also describe elements in a list-like objects.

env is a related function that describes all loaded environments.

Examples

110

11(all=TRUE)

11("package:base")

11("package:base”, class="function”, invert=TRUE)

11(infert)

model <- glm(case~spontaneous+induced, family=binomial, data=infert)
11(model, dim=TRUE)

11(model, sort=TRUE)

11(model$family)

30 Is.funs

1s.funs List function objects

Description

Return a character vector giving the names of function objects in the specified environment.

Usage

1s.funs(...)

Arguments

Arguments passed to 1s. See the help for 1s for details.

Details

This function calls 1s and then returns a character vector containing only the names of only function
objects.

Value

character vector

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

1s, is.function

Examples

List functions defined in the global environment:
1s.funs()

List functions available in the base package:
1s.funs("package:base")

mapLevels 31

mapLevels Mapping levels

Description

mapLevels produces a map with information on levels and/or internal integer codes. As such can
be conveniently used to store level mapping when one needs to work with internal codes of a factor
and later transfrorm back to factor or when working with several factors that should have the same
levels and therefore the same internal coding.

Usage

mapLevels(x, codes=TRUE, sort=TRUE, drop=FALSE, combine=FALSE, ...)
mapLevels(x) <- value

Arguments
X object whose levels will be mapped, look into details
codes boolean, create integer levelsMap (with internal codes) or character levelsMap
(with level names)
sort boolean, sort levels of character x, look into details
drop boolean, drop unused levels
combine boolean, combine levels, look into details
additional arguments for sort
value levelsMap or listLevelsMap, output of mapLevels methods or constructed by
user, look into details
Value

mapLevels() returns “levelsMap” or “listLevelsMap” objects as described in levelsMap and listLevelsMap
section.

Result of mapLevels<- is always a factor with remapped levels or a “list/data.frame” with remapped
factors.

mapLevels

The mapLevels function was written primarly for work with “factors”, but is generic and can also
be used with “character”, “list” and “data.frame”, while “default” method produces error. Here the
term levels is also used for unique character values.

When codes=TRUE integer ‘“levelsMap” with information on mapping internal codes with levels is
produced. Output can be used to transform integer to factor or remap factor levels as described be-
low. With codes=FALSE character “levelsMap” is produced. The later is usefull, when one would
like to remap factors or combine factors with some overlap in levels as described in mapLevels<-
section and shown in examples.

32

mapLevels

sort argument provides possibility to sort levels of “character” x and has no effect when x is a
“factor”.

Argument combine has effect only in “list” and “data.frame” methods and when codes=FALSE i.e.
with character “levelsMaps”. The later condition is necesarry as it is not possible to combine
maps with different mapping of level names and integer codes. It is assumed that passed “list” and
“data.frame” have all components for which methods exist. Otherwise an error is produced.

levelsMap and listLevelsMap

Function mapLevels returns a map of levels. This map is of class “levelsMap”, which is actually
a list of length equal to number of levels and with each component of length 1. Components need
not be of length 1. There can be either integer or character “levelsMap”. Integer “levelsMap”
(when codes=TRUE) has names equal to levels and components equal to internal codes. Character
“levelsMap” (when codes=FALSE) has names and components equal to levels. When mapLevels
is applied to “list” or “data.frame”, result is of class “listLevelsMap”, which is a list of “levelsMap”
components described previously. If combine=TRUE, result is a “levelsMap” with all levels in x
components.

For ease of inspection, print methods unlists “levelsMap” with proper names. mapLevels<- meth-
ods are fairly general and therefore additional convenience methods are implemented to ease the
work with maps: is.levelsMap and is.listLevelsMap; as.levelsMap and as.listLevelsMap
for coercion of user defined maps; generic "[" and c for both classes (argument recursive can be
used in c to coerce “listLevelsMap” to “levelsMap”) and generic unique and sort (generic from R
2.4) for “levelsMap”.

mapLevels<-

Workhorse under mapLevels<- methods is levels<-. mapLevels<- just control the assignment of
“levelsMap” (integer or character) or “listLevelsMap” to x. The idea is that map values are changed
to map names as indicated in levels examples. Integer ‘“levelsMap” can be applied to “integer”
or “factor”, while character “levelsMap” can be applied to “character” or “factor”. Methods for
“list” and “data.frame” can work only on mentioned atomic components/columns and can accept
either “levelsMap” or “listLevelsMap”. Recycling occurs, if length of value is not the same as
number of components/columns of a “list/data.frame”.

Author(s)

Gregor Gorjanc

See Also

factor, levels and unclass

Examples

Integer levelsMap
(f <- factor(sample(letters, size=20, replace=TRUE)))
(mapInt <- mapLevels(f))

Integer to factor

matchcols 33

(int <- as.integer(f))
(mapLevels(int) <- mapInt)
all.equal(int, f)

Remap levels of a factor

(fac <- factor(as.integer(f)))

(mapLevels(fac) <- mapInt) # the same as levels(fac) <- mapInt
all.equal(fac, f)

Character levelsMap
f1 <- factor(letters[1:10])
f2 <- factor(letters[5:14])

Internal codes are the same, but levels are not
as.integer(f1)
as.integer(f2)

Get character levelsMaps and combine them
mapChal <- mapLevels(f1, codes=FALSE)
mapCha2 <- maplLevels(f2, codes=FALSE)
(mapCha <- c(mapChal, mapCha2))

Remap factors
mapLevels(f1) <- mapCha # the same as levels(f1) <- mapCha
mapLevels(f2) <- mapCha # the same as levels(f2) <- mapCha

Internal codes are now "consistent” among factors
as.integer(f1)
as.integer(f2)

Remap characters to get factors

f1 <- as.character(f1); f2 <- as.character(f2)
mapLevels(f1) <- mapCha

mapLevels(f2) <- mapCha

Internal codes are now "consistent” among factors
as.integer(f1)
as.integer(f2)

matchcols Select columns names matching certain critera

Description

This function allows easy selection of the column names of an object using a set of inclusion and
exclusion critera.

Usage

matchcols(object, with, without, method=c("and”,"or"), ...)

34

Arguments

object Matrix or data frame

with, without Vector of regular expression patterns

method One of "and" or "or"

Optional arguments to grep

Value

matchcols

Vector of column names which match all (method="and"”) or any (method="or") of the patterns
specified in with, but none of the patterns specified in without.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

grep

Examples

Create a matrix with many named columns

x <- matrix(ncol=30, nrow=

5)

colnames(x) <- c("AffyID","Overall Group Means: Control”,

"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall
"Overall

Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Group
Model

Model:
Model:
Model:
Model:
Model:
Model:
Model:
Model:
Model:
Model:
Model:
Model:
Model:
Model:

Means: Moderate”,

Means: Marked”,

Means: Severe”,

StdDev: Control”,

StdDev: Moderate”,

StdDev: Marked”,

StdDev: Severe",

CV: Control”,

CV: Moderate”,

CV: Marked",

CV: Severe”,

P-value”,
(Intercept): Estimate”,
Moderate: Estimate”,
Marked: Estimate”,
Severe: Estimate”,
(Intercept): Std. Error”,
Moderate: Std. Error”,
Marked: Std. Error”,
Severe: Std. Error”,
(Intercept): t value”,
Moderate: t value”,
Marked: t value”,
Severe: t value”,
(Intercept): Pr(>|t])",
Moderate: Pr(>|t|)",

MedUnits 35

"Overall Model: Marked: Pr(>|t])",
"Overall Model: Severe: Pr(>|t|)")

Get the columns which give estimates or p-values

only for marked and severe groups

matchcols(x, with=c("Pr", "Std. Error"),
without=c("Intercept”, "Moderate"),
method="or")

Get just the column which give the p-value for the intercept
matchcols(x, with=c("Intercept”, "Pr"))

MedUnits Table of conversions between Intertional Standard (SI) and US *Con-
ventional’ Units for common medical measurements.

Description

Table of conversions between Intertional Standard (SI) and US ’Conventional’ Units for common
medical measurements.

Usage

data(MedUnits)

Format
A data frame with the following 5 variables.

Abbreviation Common Abbreviation (mostly missing)
Measurement Measurement Name

ConventionalUnit Conventional Unit

Conversion Conversion factor

SIUnit SI Unit

Details

Medical laboratories and practitioners in the United States use one set of units (the so-called ’Con-
ventional’ units) for reporting the results of clinical laboratory measurements, while the rest of the
world uses the International Standard (SI) units. It often becomes necessary to translate between
these units when participating in international collaborations.

This data set provides constants for converting between SI and US ’Conventional” units.
To perform the conversion from SI units to US ’Conventional’ units do:

Measurement in ConventionalUnit = (Measurement in SIUnit) / Conversion

To perform conversion from *Conventional’ to SI units do:

Measurement in SIUnit = (Measurement in ConventionalUnit) * Conversion

36

Source

https://globalrph.com/medical/conventional-units-international-units/

See Also

The function ConvertMedUnits automates the conversion task.

Examples

data(MedUnits)
Show available conversions
MedUnits$Measurement

Utility function
matchUnits <- function(X) MedUnits[grep(X, MedUnits$Measurement),]

Convert SI Glucose measurement to 'Conventional' units

GlucoseSI = c(5, 5.4, 5, 5.1, 5.6, 5.1, 4.9, 5.2, 5.5) # in SI Units
GlucoseUS = GlucoseSI / matchUnits("Glucose")$Conversion
cbind(GlucoseSI, GlucoselUS)

Also consider using ConvertMedUnits()
ConvertMedUnits(GlucoseSI, "Glucose", to="US")

mv Rename an Object

Description

Rename an object.

Usage

mv(from, to, envir = parent.frame())

Arguments
from Character scalar giving the source object name
to Character scalar giving the desination object name
envir Environment in which to do the rename

Details

This function renames an object by the value of object a to the name b, and removing a.

Value

Invisibly returns the value of the object.

https://globalrph.com/medical/conventional-units-international-units/

nobs 37

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

rm, assign

Examples

a<-1:10

a

mv("a", "b")
b
exists("a")

nobs Compute the Number of Non-Missing Observations

Description

Compute the number of non-missing observations. Provides a new default method to handle nu-
meric and logical vectors, and a method for data frames.

Usage

nobs(object, ...)

Default S3 method:

nobs(object, ...)

S3 method for class 'data.frame'

nobs(object, ...)

S3 method for class 'lm'

nobs(object, ...)

n_obs(object, ...)
Arguments

object Numeric or logical vector, data frame, or a model object.

Further arguments to be passed to methods.

Value

Either single numeric value (for vectors) or a vector of numeric values (for data frames) giving the
number of non-missing values.

38 nPairs

Note

The base R package stats provides a generic nobs function with methods for fitted model objects.
The gdata package adds methods for numeric and logical vectors, as well as data frames.

An alias function n_obs is also provided, equivalent to gdata: : nobs. Using n_obs in scripts makes
it explicitly clear that the gdata implementation is being used.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

nobs in package ’stats’ for the base R implementation, is.na, length

Examples

x <-c(1, 2, 3, 5, NA, 6, 7, 1, NA)
length(x)
nobs(x)

df <- data.frame(x=rnorm(100), y=rnorm(100))
df[1,1] <- NA

df[1,2] <- NA

df[2,1] <- NA

nobs (df)

fit <- Im(y~x, data=df)
nobs(fit)
n_obs(fit)

Comparison

gdata

nobs(x)

nobs (df)

stats

length(na.omit(x))

sapply(df, function(x) length(na.omit(x)))

nPairs Number of variable pairs

Description

Count the number of pairs between variables.

Usage

nPairs(x, margin=FALSE, names=TRUE, abbrev=TRUE, ...)

nPairs 39

Arguments
X data.frame or a matrix
margin logical, calculate the cumulative number of “pairs”
names logical, add row/col-names to the output
abbrev logical, abbreviate names
other arguments passed to abbreviate
Details

The class of returned matrix is nPairs and matrix. There is a summary method, which shows the
opposite information - counts how many times each variable is known, while the other variable of a
pair is not. See examples.

Value

Matrix of order k, where k is the number of columns in x. Values in a matrix represent the number
of pairs between columns/variables in x. If margin=TRUE, the number of columns is k + 1 and the
last column represents the cumulative number of pairing all variables.

Author(s)

Gregor Gorjanc

See Also

abbreviate

Examples

Test data

test <- data.frame(Vi=c(1, 2, 3, 4, 5),
V2=c(NA, 2, 3, 4, 5),
v3=c(1, NA, NA, NA, NA),
V4=c(1, 2, 3, NA, NA))

Number of variable pairs
nPairs(x=test)

Without names
nPairs(x=test, names=FALSE)

Longer names
colnames(test) <- c("Variablel”, "Variable2", "Variable3"”, "Variable4")
nPairs(x=test)

Margin
nPairs(x=test, margin=TRUE)

Summary
summary (object=nPairs(x=test))

40 object_size

object_size Report the Space Allocated for Objects

Description

Provides an estimate of the memory that is being used to store R objects.

Usage

object_size(...)

S3 method for class 'object_sizes'
is(x)

S3 method for class 'object_sizes'
as(x)

S3 method for class 'object_sizes'
c(..., recursive=FALSE)

S3 method for class 'object_sizes'

format(x, humanReadable=getOption("humanReadable"),
standard="IEC", units, digits=1, width=NULL, sep=" ",
justify=c("right”, "left"), ...)

S3 method for class 'object_sizes'

print(x, quote=FALSE,
humanReadable=getOption("humanReadable”), standard="IEC", units, digits=1,
width=NULL, sep=" ", justify=c("right"”, "left"), ...)

Arguments

object_size: R objects; print and format: arguments to be passed to other

methods.
X output from object_size.
quote whether or not the result should be printed with surrounding quotes.

humanReadable whether to use the “human readable” format.
standard, units, digits, width, sep, justify
passed to humanReadable.

recursive passed to the ¢ method.

Details

The base R package utils provides an object.size function that handles a single object. The
gdata package provides a similar object_size function that handles multiple objects.

object_size 41

Both the utils and gdata implementations store the object size in bytes, but offer a slightly dif-
ferent user interface for showing the object size in other formats. The gdata implementation offers
human readable format similar to 1s, df or du shell commands, by calling humanReadable directly,
calling print with the argument humanReadable=TRUE, or by setting options(humanReadable=TRUE).

The 3.0.0 release of gdata renamed this function to object_size, allowing users to explicitly call

the gdata implementation. This eliminates ambiguity and makes it less likely to get errors when
running parts of an existing script without first loading the gdata package. The old object.size
function name is now deprecated in the gdata package, pointing users to object_size and utils: :gdata
instead.

Value

A numeric vector class c("object_sizes"”, "numeric"”) containing estimated memory allocation
attributable to the objects in bytes.

See Also

object.size in package ’utils’ for the base R implementation, Memory-1limits for the design
limitations on object size, humanReadable for human readable format.

Examples

object_size(letters)
object_size(ls)

Find the 10 largest objects in the base package

allObj <- sapply(ls("package:base”), function(x)
object_size(get(x, envir=baseenv())))

(bigObj <- as.object_sizes(rev(sort(allObj))[1:101))

print(bigObj, humanReadable=TRUE)

as.object_sizes(14567567)

oldopt <- options(humanReadable=TRUE)
(z <- object_size(letters,
c(letters, letters),
rep(letters, 100),
rep(letters, 10000)))
is.object_sizes(z)
as.object_sizes(14567567)
options(oldopt)

Comparison

gdata

print(object_size(loadNamespace), humanReadable=TRUE)
print(bigObj, humanReadable=TRUE)

utils

print(utils::object.size(loadNamespace), units="auto")
sapply(bigObj, utils:::format.object_size, units="auto")
11
11("package:base")[order(-11("package:base")$KB)[1:10],]

42 rename.vars

rename.vars Remove or rename variables in a data frame

Description

Remove or rename a variables in a data frame.

Usage
rename.vars(data, from="", to="", info=TRUE)
remove.vars(data, names="", info=TRUE)
Arguments
data data frame to be modified.
from character vector containing the current name of each variable to be renamed.
to character vector containing the new name of each variable to be renamed.
names character vector containing the names of variables to be removed.
info boolean value indicating whether to print details of the removal/renaming. De-
faults to TRUE.
Value

The updated data frame with variables listed in from renamed to the corresponding element of to.

Author(s)

Code by Don MacQueen <macq@l1nl.gov>. Documentation by Gregory R. Warnes <greg@warnes.net>.

See Also

names, colnames, data.frame

Examples

data <- data.frame(x=1:10,y=1:10,z=1:10)

names(data)

data <- rename.vars(data, c("x","y","z"), c("first","second”,"third"))
names(data)

data <- remove.vars(data, "second")
names(data)

reorder.factor 43

reorder.factor Reorder the Levels of a Factor

Description

Reorder the levels of a factor.

Usage

S3 method for class 'factor'
reorder(x, X, FUN, ..., order=is.ordered(x), new.order,
sort=mixedsort)

Arguments
X factor
X auxillary data vector
FUN function to be applied to subsets of X determined by X, to determine factor order
optional parameters to FUN
order logical value indicating whether the returned object should be an ordered factor
new.order a vector of indexes or a vector of label names giving the order of the new factor
levels
sort function to use to sort the factor level names, used only when new.order is
missing
Details

This function changes the order of the levels of a factor. It can do so via three different mechanisms,
depending on whether, X and FUN, new.order or sort are provided.

If X and FUN are provided: The data in X is grouped by the levels of x and FUN is applied. The groups
are then sorted by this value, and the resulting order is used for the new factor level names.

If new. order is a numeric vector, the new factor level names are constructed by reordering the factor
levels according to the numeric values. If new. order is a chraccter vector, new.order gives the list
of new factor level names. In either case levels omitted from new.order will become missing (NA)
values.

If sort is provided (as it is by default): The new factor level names are generated by calling the
function specified by sort to the existing factor level names. With sort=mixedsort (the default)
the factor levels are sorted so that combined numeric and character strings are sorted in according
to character rules on the character sections (including ignoring case), and the numeric rules for the
numeric sections. See mixedsort for details.

Value

A new factor with reordered levels

44 resample

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

factor and reorder

Examples

Create a 4 level example factor

trt <- factor(sample(c("PLACEBO", "300 MG", "600 MG", "1200 MG"),
100, replace=TRUE))

summary (trt)

Note that the levels are not in a meaningful order.

Change the order to something useful

- default "mixedsort” ordering

trt2 <- reorder(trt)

summary (trt2)

- using indexes:

trt3 <- reorder(trt, new.order=c(4, 2, 3, 1))
summary (trt3)

- using label names:

trt4 <- reorder(trt, new.order=c("PLACEBO", "300 MG", "600 MG", "1200 MG"))
summary (trt4)

- using frequency

trt5 <- reorder(trt, X=rnorm(100), FUN=mean)
summary (trt5)

Drop out the '300 MG' level
trt6 <- reorder(trt, new.order=c("PLACEBO", "600 MG", "1200 MG"))
summary (trt6)

resample Consistent Random Samples and Permutations

Description

Take a sample of the specified size from the elements of x using either with or without replacement.

Usage

resample(x, size, replace = FALSE, prob = NULL)

Arguments

X A numeric, complex, character or logical vector from which to choose.

size Non-negative integer giving the number of items to choose.

startsWith 45

replace Should sampling be with replacement?
prob A vector of probability weights for obtaining the elements of the vector being
sampled.
Details

resample differs from the S/R sample function in resample always considers x to be a vector of
elements to select from, while sample treats a vector of length one as a special case and samples
from 1:x. Otherwise, the functions have identical behavior.

Value

Vector of the same length as the input, with the elements permuted.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

sample

Examples

Sample behavior differs if first argument is scalar vs vector
sample(c(10))
sample(c(10, 10))

Resample has the consistent behavior for both cases
resample(c(10))
resample(c(10, 10))

startsWith Does String Start or End With Another String?

Description

Determines if entries of x start with a string prefix, where strings are recycled to common lengths.

Usage

startsWith(x, prefix, trim=FALSE, ignore.case=FALSE)

Arguments
X character vector whose “starts” are considered.
prefix character vector, typicall of length one, i.e., a string.
trim whether leading and trailing spaces should be removed from x before testing for

a match.

ignore.case whether case should be ignored when testing for a match.

46 trim

Value

A logical vector, of “common length” of x and prefix, i.e., of the longer of the two lengths unless
one of them is zero when the result is also of zero length. A shorter input is recycled to the output
length.

Note

The base package provides the underlying startsWith function that performs the string compari-
son. The gdata package adds the trim and ignore. case features.

An alias function starts_with is also provided, equivalent to gdata: : startsWith. Using starts_with
in scripts makes it explicitly clear that the gdata implementation is being used.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

startsWith for the ’base’ package implementation, grepl, substring

Examples

Simple example
startsWith("Testing”, "Test")

Vector examples
s <- c("Testing", " Testing”, "testing"”, "Texting")
names(s) <- s

startsWith(s, "Test") # " Testing”, "testing”, and "Texting” do not match
startsWith(s, "Test”, trim=TRUE) # Now " Testing” matches
startsWith(s, "Test"”, ignore.case=TRUE) # Now "testing” matches

Comparison

gdata

startsWith(s, "Test”, trim=TRUE)
startsWith(s, "Test"”, ignore.case=TRUE)
base

startsWith(trimws(s), "Test")
startsWith(tolower(s), tolower("Test"))

trim Remove leading and trailing spaces from character strings

Description

Remove leading and trailing spaces from character strings and other related objects.

trim 47

Usage

trim(s, recode.factor=TRUE, ...)
Arguments

s object to be processed

recode.factor should levels of a factor be recoded, see below

arguments passed to other methods, currently only to reorder. factor for fac-
tors

Details

trim is a generic function, where default method does nothing, while method for character s
trims its elements and method for factor s trims levels. There are also methods for 1list and
data.frame.

Trimming character strings can change the sort order in some locales. For factors, this can affect
the coding of levels. By default, factor levels are recoded to match the trimmed sort order, but this
can be disabled by setting recode. factor=FALSE. Recoding is done with reorder. factor.

Value

s with all leading and trailing spaces removed in its elements.

Author(s)

Gregory R. Warnes <greg@warnes.net> with contributions by Gregor Gorjanc

See Also

trimws, sub, gsub as well as argument strip.white in read. table and reorder.factor

Examples

n n

s <-
trim(s)

this is an example string
f <- factor(c(s, s, n A”, n B n’ n C n’ uD u))
levels(f)

trim(f)
levels(trim(f))

trim(f, recode.factor=FALSE)
levels(trim(f, recode.factor=FALSE))

1 <- list(s=rep(s, times=6), f=f, i=1:6)
trim(1l)

df <- as.data.frame(l)
trim(df)

48 trimSum

trimSum Trim a vector such that the last/first value represents the sum of
trimmed values

Description

Trim (shorten) a vector in such a way that the last or first value represents the sum of trimmed
values. User needs to specify the desired length of a trimmed vector.

Usage
trimSum(x, n, right=TRUE, na.rm=FALSE, ...)
Arguments
X numeric, a vector of numeric values
n numeric, desired length of the output
right logical, trim on the right/bottom or the left/top side
na.rm logical, remove NA values when applying a function
arguments passed to other methods - currently not used
Value

Trimmed vector with a last/first value representing the sum of trimmed values

Author(s)

Gregor Gorjanc

See Also

trim

Examples

x <- 1:10
trimSum(x, n=5)
trimSum(x, n=5, right=FALSE)

x[9] <- NA
trimSum(x, n=5)
trimSum(x, n=5, na.rm=TRUE)

unknownToNA 49

unknownToNA Change unknown values to NA and vice versa

Description

Unknown or missing values (NA in R) can be represented in various ways (as 0, 999, etc.) in different
programs. isUnknown, unknownToNA, and NAToUnknown can help to change unknown values to NA
and vice versa.

Usage
isUnknown(x, unknown=NA, ...)
unknownToNA(x, unknown, warning=FALSE, ...)
NAToUnknown(x, unknown, force=FALSE, call.=FALSE, ...)
Arguments
X generic, object with unknown value(s)
unknown generic, value used instead of NA
warning logical, issue warning if x already has NA
force logical, force to apply already existing value in x
arguments pased to other methods (as.character for POSIXIt in case of isUn-
known)
call. logical, look in warning
Details

This functions were written to handle different variants of “other NA” like representations that are
usually used in various external data sources. unknownToNA can help to change unknown values to
NA for work in R, while NAToUnknown is meant for the opposite and would usually be used prior to
export of data from R. isUnknown is a utility function for testing for unknown values.

All functions are generic and the following classes were tested to work with latest version: “integer”,
“numeric”, “character”, “factor”, “Date”, “POSIXct”, “POSIXIt”, “list”, “data.frame” and “matrix”.
For others default method might work just fine.

unknownToNA and isUnknown can cope with multiple values in unknown, but those should be given
as a “vector”. If not, coercing to vector is applied. Argument unknown can be feed also with “list”
in “list” and “data.frame” methods.

If named “list” or “vector” is passed to argument unknown and x is also named, matching of names
will occur.

Recycling occurs in all “list” and “data.frame” methods, when unknown argument is not of the same
length as x and unknown is not named.

Argument unknown in NAToUnknown should hold value that is not already present in x. If it does,
error is produced and one can bypass that with force=TRUE, but be warned that there is no way to
distinguish values after this action. Use at your own risk! Anyway, warning is issued about new

50 unknownToNA

value in x. Additionally, caution should be taken when using NAToUnknown on factors as additional
level (value of unknown) is introduced. Then, as expected, unknownToNA removes defined level
in unknown. If unknown="NA", then "NA" is removed from factor levels in unknownToNA due to
consistency with conversions back and forth.

Unknown representation in unknown should have the same class as x in NAToUnknown, except in
factors, where unknown value is coerced to character anyway. Silent coercing is also applied, when
“integer” and “numeric” are in question. Otherwise warning is issued and coercing is tried. If that
fails, R introduces NA and the goal of NAToUnknown is not reached.

NAToUnknown accepts only single value in unknown if x is atomic, while “list” and “data.frame”
methods accept also “vector” and “list”.

“list/data.frame” methods can work on many components/columns. To reduce the number of needed
specifications in unknown argument, default unknown value can be specified with component ".de-
fault". This matches component/column ".default" as well as all other undefined components/columns!
Look in examples.

Value

unknownToNA and NAToUnknown return modified x. isUnknown returns logical values for object x.

Author(s)

Gregor Gorjanc

See Also

is.na

Examples

xInt <- c(@, 1, @, 5, 6, 7, 8, 9, NA)
isUnknown(x=xInt, unknown=0)
isUnknown(x=xInt, unknown=c(@, NA))
(xInt <- unknownToNA(x=xInt, unknown=0))
(xInt <- NAToUnknown(x=xInt, unknown=0))

xFac <- factor(c("0", 1, 2, 3, NA, "NA"))
isUnknown(x=xFac, unknown=0)

isUnknown (x=xFac, unknown=c(@, NA))
isUnknown(x=xFac, unknown=c(@, "NA"))
isUnknown(x=xFac, unknown=c(@, "NA", NA))
(xFac <- unknownToNA(x=xFac, unknown="NA"))
(xFac <- NAToUnknown(x=xFac, unknown="NA"))

xList <- list(xFac=xFac, xInt=xInt)
isUnknown(xList, unknown=c(”NA", 0))
isUnknown(xList, unknown=1list("NA", @))
tmp <- c(@, "NA")

names(tmp) <- c(".default”, "xFac")
isUnknown(xList, unknown=tmp)

tmp <- list(.default=0, xFac="NA")

unmatrix 51

isUnknown(xList, unknown=tmp)

(xList <- unknownToNA(xList, unknown=tmp))
(xList <- NAToUnknown(xList, unknown=999))

unmatrix Convert a matrix into a vector, with appropriate names

Description
Convert a matrix into a vector, with element names constructed from the row and column names of
the matrix.

Usage
unmatrix(x, byrow=FALSE)

Arguments
X matrix
byrow Logical. If FALSE, the elements within columns will be adjacent in the resulting
vector, otherwise elements within rows will be adjacent.
Value

A vector with names constructed from the row and column names from the matrix. If the row or
column names are missing, Crl’, r2°,...,) or (Ccl’, ’c2’,...) will be used as appropriate.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

as.vector

Examples

Simple example

m <- matrix(letters[1:10], ncol=5)
m

unmatrix(m)

Unroll model output

X <= rnorm(100)

y <= rnorm(100, mean=3+5xx, sd=0.25)
m <- coef(summary(Im(y ~ x)))
unmatrix(m)

52

update.list

update.list

Update the elements of a list, or rows of a data frame

Description

For a list, update the elements of a list to contain all of the named elements of a new list, overwriting
elements with the same name, and (optionally) copying unnamed elements. For a data frame,
replace the rows of a data frame by corresponding rows in 'new’ with the same value for ’by’.

Usage

S3 method for class 'list'
update(object, new, unnamed=FALSE, ...)
S3 method for class 'data.frame'
update(object, new, by, by.x=by, by.y=by,
append=TRUE, verbose=FALSE, ...)

Arguments

object
new

unnamed

by, by.x, by.y
append

verbose

Value

update.list

List or data frame to be updated.

List or data frame containing new elements/rows.

Logical. If TRUE, unnamed list elements of new will be appended to object.
Character. Name of column to use for matching data frame rows.

Logical. If TRUE, items in new with no match in object will be appended to the
data frame.

Logical. If TRUE progress messages will be displayed.

optional method arguments (ignored).

a list a constructed from the elements of object, with named elements of new
replacing corresponding named elements from object, and non-corresponding
elements of new appended. If unnamed=TRUE, unnamed elements of new will be
appended.

update.data.frame

Note

a data frame constructed from the rows of object with rows where values in
by.x equal the values in by.y replaced by the corresponding row in new. If
append=TRUE, any elements of new without no matching rows in object will be
appended.

These methods can be called directly or as via the S3 base method for update.

upperTriangle

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

update, merge

Examples

Update list
old <- list(a=1,b="red",c=1.37)
new <- list(b="green"”,c=2.4)

update(old, new)
update.list(old,new) # equivalent

older <- list(a=@, b="orange", 4, 5, 6)

newer <- list(b="purple”, 7, 8, 9)

update(older, newer) # ignores unnamed elements of newer
update(older, newer, unnamed=TRUE) # appends unnamed elements of newer

Update data frame
old <- data.frame(letter=letters[1:5], number=1:5)
new <- data.frame(letter=letters[c(5, 1, 7)1, number=c(-5, -1, -7))

update(old, new, by="letter") # default is append=TRUE
update(old, new, by="letter", append=FALSE)
update(old, new, by="letter", verbose=FALSE)

53

upperTriangle Extract or replace the upper/lower triangular portion of a matrix

Description

Extract or replace the upper/lower triangular portion of a matrix.

Usage

upperTriangle(x, diag=FALSE, byrow=FALSE)
upperTriangle(x, diag=FALSE, byrow=FALSE) <- value
lowerTriangle(x, diag=FALSE, byrow=FALSE)
lowerTriangle(x, diag=FALSE, byrow=FALSE) <- value

Arguments

X Matrix

diag Logical. If TRUE, include the matrix diagonal.

54 upperTriangle

byrow Logical. If FALSE, return/replace elements in column-wise order. If TRUE, re-
turn/replace elements in row-wise order.

value Either a single value or a vector of length equal to that of the current upper/lower
triangular. Should be of a mode which can be coerced to that of x.

Value

upperTriangle(x) and lowerTriangle(x) return the upper or lower triangle of matrix X, respec-
tively. The assignment forms replace the upper or lower triangular area of the matrix with the
provided value(s).

Note
By default, the elements are returned/replaced in R’s default column-wise order. Thus
lowerTriangle(x) <- upperTriangle(x)
will not yield a symmetric matrix. Instead use:
lowerTriangle(x) <- upperTriangle(x, byrow=TRUE)
or equivalently:

lowerTriangle(x, byrow=TRUE) <- upperTriangle(x)

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

diag, lower.tri, upper.tri

Examples

x <- matrix(1:25, nrow=5, ncol=5)

X

upperTriangle(x)

upperTriangle(x, diag=TRUE)
upperTriangle(x, diag=TRUE, byrow=TRUE)

lowerTriangle(x)
lowerTriangle(x, diag=TRUE)
lowerTriangle(x, diag=TRUE, byrow=TRUE)

upperTriangle(x) <- NA
X

upperTriangle(x, diag=TRUE) <- 1:15
X

wideByFactor 55

lowerTriangle(x) <- NA
X

lowerTriangle(x, diag=TRUE) <- 1:15
X

Copy lower triangle into upper triangle to make

the matrix (diagonally) symmetric

X <- matrix(LETTERS[1:25], nrow=5, ncol=5, byrow=TRUE)
X

lowerTriangle(x) = upperTriangle(x, byrow=TRUE)

X

wideByFactor Create multivariate data by a given factor

Description

Modify data frame in such a way that variables are “separated” into several columns by factor levels.

Usage

wideByFactor(x, factor, common, sort=TRUE, keepFactor=TRUE)

Arguments
X data frame
factor character, column name of a factor by which variables will be divided
common character, column names of (common) columns that should not be divided
sort logical, sort resulting data frame by factor levels
keepFactor logical, keep the ‘factor’ column

Details

Given data frame is modified so that the output represents a data frame with ¢ + f + n * v columns,
where ¢ is a number of common columns for all levels of a factor, f is a factor column, n is a
number of levels in factor f and v is a number of variables that should be divided for each level of
a factor. Number of rows stays the same.

Value

A data frame where divided variables have sort of “diagonalized” structure.

Author(s)

Gregor Gorjanc

56 write.fwf

See Also

reshape in the stats package.

Examples

n<-10

f<-2

tmp <- data.frame(yl=rnorm(n=n),
y2=rnorm(n=n),
f1=factor(rep(letters[1:f], n/2)),
f2=factor(c(rep("M", n/2), rep("F", n/2))),
cl=1:n,
c2=2%(1:n))

wideByFactor(x=tmp, factor="f1", common=c("c1", "c2", "f2"))

wideByFactor(x=tmp, factor="f1", common=c("c1”, "c2"))
write.fwf Write object to file in fixed width format
Description

Write object to file in fixed width (fwf) format.

Usage

write.fwf(x, file="", append=FALSE, quote=FALSE, sep=" ", na="",
rownames=FALSE, colnames=TRUE, rowCol=NULL, justify="left",
formatInfo=FALSE, quoteInfo=TRUE, width=NULL, eol="\n",

gmethod=c("escape”, "double”), scientific=TRUE, ...)
Arguments
X data.frame or matrix, the object to be written.
file character, name of file or connection, look in write. table for more.
append logical, append to existing data in file.
quote logical, quote data in output.
na character, the string to use for missing values (NA) in the output.
sep character, separator between columns in output.
rownames logical, print row names.
colnames logical, print column names.
rowCol character, rownames column name.
justify character, alignment of character columns, see format.

formatInfo logical, return information on number of levels, widths and format.

write.fwf 57

quoteInfo logical, should formatInfo account for quotes.
width numeric, width of the columns in the output.
eol the character(s) to print at the end of each line (row). For example, eol="\r\n"

will produce Windows line endings on a Unix-alike OS, and eol="\r" will
produce files as expected by Mac OS Excel 2004.

gmethod a character string specifying how to deal with embedded double quote characters
when quoting strings. Must be one of "escape” (default), in which case the
quote character is escaped in C style by a backslash, or "double”, in which case
it is doubled. You can specify just the initial letter.

scientific logical, allow numeric values to be formatted using scientific notation.

further arguments to format.info and format.

Details

Output is similar to print (x) or format (x). Formatting is done completely by format on a column
basis. Columns in the output are by default separated with a space i.e. empty column with a width
of one character, but that can be changed with sep argument as passed to write.table via....

As mentioned formatting is done completely by format. Arguments can be passed to format via
... to further modify the output. However, note that the returned formatInfo might not properly
account for this, since format.info (which is used to collect information about formatting) lacks
the arguments of format.

quote can be used to quote fields in the output. Since all columns of x are converted to character
(via format) during the output, all columns will be quoted! If quotes are used, read. table can
be easily used to read the data back into R. Check examples. Do read the details about quoteInfo
argument.

Use only true characters, i.e., avoid use of tabs, i.e., "\t" or similar separators via argument sep.
Width of the separator is taken as the number of characters evaluated via nchar (sep).

Use argument na to convert missing/unknown values. Only single value can be specified. Use
NAToUnknown prior to export if you need greater flexibility.

If rowCol is not NULL and rownames=TRUE, rownames will also have column name with rowCol
value. This is mainly for flexibility with tools outside R. Note that it may not be easy to import
data back to R with read. fwf if you also export rownames. This is the reason, that default is
rownames=FALSE.

Information about format of output will be returned if formatInfo=TRUE. Returned value is de-
scribed in value section. This information is gathered by format. info and care was taken to handle
numeric properly. If output contains rownames, values account for this. Additionally, if rowCol is
not NULL returned values contain also information about format of rownames.

If quote=TRUE, the output is of course wider due to quotes. Return value (with formatInfo=TRUE)
can account for this in two ways; controlled with argument quoteInfo. However, note that there is
no way to properly read the data back to R if quote=TRUE and quoteInfo=FALSE arguments were
used for export. quoteInfo applies only when quote=TRUE. Assume that there is a file with quoted
data as shown below (column numbers in first three lines are only for demonstration of the values
in the output).

58 write.fwf

123456789 12345678 # for position

123 1234567 123456 # for width with quoteInfo=TRUE
1 12345 1234 # for width with quoteInfo=FALSE
"a" "hsgdh” " 9"

e bb" " 123"

With quoteInfo=TRUE write. fwf will return

colname position width

V1 1 3
V2 5 7
V3 13 6

or (with quoteInfo=FALSE)

colname position width

V1 2 1
V2 6 5
V3 14 4

Argument width can be used to increase the width of the columns in the output. This argument
is passed to the width argument of format function. Values in width are recycled if there is less
values than the number of columns. If the specified width is too short in comparison to the "width"
of the data in particular column, error is issued.

Value

Besides its effect to write/export data write. fwf can provide information on format and width. If
formatInfo = FALSE, then a data frame is returned with the following columns:

colname name of the column

nlevels number of unique values (unused levels of factors are dropped), O for numeric
column

position starting column number in the output

width width of the column

digits number of digits after the decimal point

exp width of exponent in exponential representation; 0 means there is no exponential
representation, while 1 represents exponent of length one i.e. Te+6 and 2 1e+06
or le+16

Author(s)

Gregor Gorjanc.

See Also

format.info, format, NAToUnknown, write.table, read. fwf, read.table and trim.

write.fwf

Examples

Some data
num <- round(c(733070.345678, 1214213.78765456, 553823.798765678,
1085022.8876545678, 571063.88765456, 606718.3876545678,
1053686.6, 971024.187656, 631193.398765456, 879431.1),
digits=3)

testData <- data.frame(numl=c(1:10, NA),
num2=c(NA, seq(from=1, to=5.5, by=0.5)),
num3=c(NA, num),
intl=c(as.integer(1:4), NA, as.integer(4:9)),
facl=factor(c(NA, letters[1:9], "hjh")),
fac2=factor(c(letters[6:15], NA)),
chal=c(letters[17:261, NA),
cha2=c(NA, "longer", letters[25:17]),
stringsAsFactors=FALSE)
levels(testData$facl) <- c(levels(testData$facl), "unusedLevel”)
testData$Date <- as.Date("1900-1-1")
testData$Date[2] <- NA
testData$POSIXt <- as.POSIXct(strptime(”1900-1-1 01:01:01",
format="%Y-%m-%d %H:%M:%S"))
testData$POSIXt[5] <- NA

Default
write.fwf(x=testData)

NA should be -
write.fwf(x=testData, na="-")

NA should be -NA-
write.fwf(x=testData, na="-NA-")

Some other separator than space
write.fwf(x=testDatal, 1:4], sep="-mySep-")

Force wider columns
write.fwf(x=testDatal, 1:5], width=20)

Show effect of 'scientific' option
testData$num3 <- testData$num3 * 1e8
write.fwf(testData, scientific=TRUE)
write.fwf(testData, scientific=FALSE)
testData$num3 <- testData$num3 / 1e8

Write to file and report format and fixed width information
file <- tempfile()

formatInfo <- write.fwf(x=testData, file=file, formatInfo=TRUE)
formatInfo

Read exported data back to R (note +1 due to separator)

- without header

read. fwf(file=file, widths=formatInfo$width + 1, header=FALSE, skip=1,
strip.white=TRUE)

60

- with header, via postimport modfication

tmp <- read.fwf(file=file, widths=formatInfo$width + 1, skip=1,
strip.white=TRUE)

colnames(tmp) <- read.table(file=file, nrow=1, as.is=TRUE)

tmp

- with header, persuading read.fwf to accept header properly

(thanks to Marc Schwartz)

read. fwf(file=file, widths=formatInfo$width + 1, strip.white=TRUE,
skip=1, col.names=read.table(file=file, nrow=1, as.is=TRUE))

- with header, using quotes
write.fwf(x=testData, file=file, quote=TRUE)
read.table(file=file, header=TRUE, strip.white=TRUE)

Tidy up
unlink(file)

write.fwf

Index

* NA
is.what, 25
unknownToNA, 49
* array
combine, 10
interleave, 23
upperTriangle, 53
* attribute
11,28
nobs, 37
* category
interleave, 23
+ character
centerText, 9
startsWith, 45
trim, 46
* classes
is.what, 25
11,28
x data export
write.fwf, 56
x data output
write.fwf, 56
+ datasets
MedUnits, 35
* data
env, 15
keep, 26
11,28
mv, 36
update.list, 52
*x documentation
Args, 5
* environment
env, 15
keep, 26
11,28
1s.funs, 30
mv, 36

61

* error
is.what, 25

* file
write.fwf, 56

* list
11,28

* logic
duplicated2, 14

* manip
bindData, 6
case, 7
centerText, 9
combine, 10
ConvertMedUnits, 11
drop.levels, 13
duplicated2, 14
first, 16
frameApply, 17
getYear, 19
left, 27
mapLevels, 31
matchcols, 33
rename.vars, 42
reorder.factor, 43
trim, 46
trimSum, 48
unknownToNA, 49
unmatrix, 51
update.list, 52
wideByFactor, 55

* misc
bindData, 6
cbindX, 8
getYear, 19
humanReadable, 21
1s.funs, 30
mapLevels, 31
nPairs, 38
resample, 44

62

wideByFactor, 55
* missing
unknownToNA, 49
+ package
gdata-package, 3
* pairs
nPairs, 38
* print
11,28
write.fwf, 56
* programming
ans, 4
Args, 5
is.what, 25
+ utilities
Args, 5
env, 15
is.what, 25
keep, 26
11,28
object_size, 40
.Last.value, 4
.checkLevelsMap (mapLevels), 31
.checkListlLevelsMap (mapLevels), 31

abbreviate, 39

aggregate.table (gdata-defunct), 19
ans, 3,4

Args, 3,5

args, 5

as.levelsMap (mapLevels), 31
as.listLevelsMap (mapLevels), 31
as.object_sizes (object_size), 40
as.vector, 51

assign, 37

bindData, 6
by, 18

c, 40

c.levelsMap (mapLevels), 31
c.listlLevelsMap (mapLevels), 31
c.object_sizes (object_size), 40
case, 3,7

cbind, 8, 9, 24

cbindX, 3, 8

centerText, 3,9

colnames, 42

combine, 3, 10, 24

ConvertMedUnits, 3, 11, 36

data.frame, 42
Date, 20
DateTimeClasses, 20
diag, 54
drop.levels, 13
duplicated, /4
duplicated2, 3, 14

env, 3, 15, 29
eval, 4

factor, 32, 44
first, 16,27
first<-(first), 16
formals, 5

format, 56-58
format.info, 57, 58

INDEX

format.object_sizes (object_size), 40

frameApply, 3, 17

gdata (gdata-package), 3
gdata-defunct, 19
gdata-package, 3
getDateTimeParts (getYear), 19
getDay, 3

getDay (getYear), 19
getHour, 3

getHour (getYear), 19
getMin, 3

getMin (getYear), 19
getMonth, 3

getMonth (getYear), 19
getSec, 3

getSec (getYear), 19
getYear, 3, 19

grep, 34

grepl, 46

gsub, 47

head, 16, 27
help, 5
humanReadable, 3, 21, 40, 41

interleave, 3, 23
is.function, 30

is.levelsMap (maplLevels), 31
is.listlLevelsMap (mapLevels), 31
is.na, 25, 38, 50

INDEX

is.numeric, 25

is.object_sizes (object_size), 40
is.what, 3, 25

isUnknown (unknownToNA), 49

keep, 3, 26

last, 27

last (first), 16

last<- (first), 16

left, 16,27

length, 38

levels, 3, 32,47

11, 3,15, 23,28

lower.tri, 54

lowerTriangle, 3

lowerTriangle (upperTriangle), 53
lowerTriangle<- (upperTriangle), 53
1s, 29, 30

1s.funs, 3, 30

mapLevels, 3, 31
mapLevels<- (mapLevels), 31
matchcols, 3, 33
MedUnits, 3, 12, 35
merge, 6, 11,53
mixedsort, 43

mv, 36

n_obs (nobs), 37

names, 29, 42
NAToUnknown, 57, 58
NAToUnknown (unknownToNA), 49
nchar, 57

nobs, 3, 37, 38

nPairs, 3, 38

object.size, 23,41
object.size (object_size), 40
object_size, 3,40
ordered, 43

print.levelsMap (mapLevels), 31
print.listLevelsMap (mapLevels), 31

print.object_sizes (object_size), 40

rbind, 8, 9, 11, 24
read. fwf, 57, 58
read.table, 47, 57, 58
remove.vars (rename.vars), 42

rename.vars, 3, 42
reorder, 44
reorder.factor, 3, 13,43, 47
resample, 3, 44

reshape, 56

right, 16

right (left), 27

rm, 26, 37

sample, 45

search, 15

slotNames, 29
sort.levelsMap (mapLevels), 31
starts_with (startsWith), 45
startsWith, 3, 45, 46

str, 29

strptime, 20

strwrap, 10

sub, 47

substring, 46

summary, 29

tail, 16, 27
trim, 3, 46, 48, 58
trimSum, 3, 48
trimws, 47
try, 18

unclass, 32

unique, 14

unique.levelsMap (mapLevels), 31
unknownToNA, 3, 49

unmatrix, 3,51

update, 53

update.data.frame (update.list), 52
update.list, 52

upper.tri, 54

upperTriangle, 3, 53
upperTriangle<- (upperTriangle), 53

warning, 49
wideByFactor, 3, 6, 55
write.fwf, 3, 56
write.table, 56-58

63

	gdata-package
	ans
	Args
	bindData
	case
	cbindX
	centerText
	combine
	ConvertMedUnits
	drop.levels
	duplicated2
	env
	first
	frameApply
	gdata-defunct
	getYear
	humanReadable
	interleave
	is.what
	keep
	left
	ll
	ls.funs
	mapLevels
	matchcols
	MedUnits
	mv
	nobs
	nPairs
	object_size
	rename.vars
	reorder.factor
	resample
	startsWith
	trim
	trimSum
	unknownToNA
	unmatrix
	update.list
	upperTriangle
	wideByFactor
	write.fwf
	Index

