## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(kfino) library(dplyr) library(ggplot2) ## ----------------------------------------------------------------------------- data(spring1) # Dimension of this dataset dim(spring1) head(spring1) ## ----error=TRUE--------------------------------------------------------------- # --- Without Optimisation on parameters param2<-list(m0=41, mm=45, pp=0.5, aa=0.001, expertMin=30, expertMax=75, sigma2_m0=1, sigma2_mm=0.05, sigma2_pp=5, K=2, seqp=seq(0.5,0.7,0.1)) resu2<-kfino_fit(datain=spring1, Tvar="dateNum",Yvar="Poids", param=param2, doOptim=FALSE, verbose=TRUE) ## ----------------------------------------------------------------------------- # structure of detectOutlier data set str(resu2$detectOutlier) # head of PredictionOK data set head(resu2$PredictionOK) # structure of kfino.results list str(resu2$kfino.results) ## ----------------------------------------------------------------------------- # flags are qualitative kfino_plot(resuin=resu2,typeG="quali", Tvar="Day",Yvar="Poids",Ident="IDE") # flags are quantitative kfino_plot(resuin=resu2,typeG="quanti", Tvar="Day",Yvar="Poids",Ident="IDE") ## ----------------------------------------------------------------------------- # --- With Optimisation on parameters param1<-list(m0=NULL, mm=NULL, pp=NULL, aa=0.001, expertMin=30, expertMax=75, sigma2_m0=1, sigma2_mm=0.05, sigma2_pp=5, K=2, seqp=seq(0.5,0.7,0.1)) ## ----error=TRUE--------------------------------------------------------------- resu1<-kfino_fit(datain=spring1, Tvar="dateNum",Yvar="Poids", param=param1, doOptim=TRUE, method="ML", verbose=TRUE) # flags are qualitative kfino_plot(resuin=resu1,typeG="quali", Tvar="Day",Yvar="Poids",Ident="IDE") # flags are quantitative kfino_plot(resuin=resu1,typeG="quanti", Tvar="Day",Yvar="Poids",Ident="IDE") ## ----error=TRUE--------------------------------------------------------------- kfino_plot(resuin=resu1,typeG="prediction", Tvar="Day",Yvar="Poids",Ident="IDE") ## ----error=TRUE--------------------------------------------------------------- resu1b<-kfino_fit(datain=spring1, Tvar="dateNum",Yvar="Poids", param=param1, doOptim=TRUE, method="EM", verbose=TRUE) # flags are qualitative kfino_plot(resuin=resu1b,typeG="quali", Tvar="Day",Yvar="Poids",Ident="IDE") # flags are quantitative kfino_plot(resuin=resu1b,typeG="quanti", Tvar="Day",Yvar="Poids",Ident="IDE") kfino_plot(resuin=resu1b,typeG="prediction", Tvar="Day",Yvar="Poids",Ident="IDE") ## ----------------------------------------------------------------------------- data(merinos1) # Dimension of this dataset dim(merinos1) head(merinos1) ## ----error=TRUE--------------------------------------------------------------- # --- With Optimisation on parameters param3<-list(m0=NULL, mm=NULL, pp=NULL, aa=0.001, expertMin=10, expertMax=45, sigma2_m0=1, sigma2_mm=0.05, sigma2_pp=5, K=2, seqp=seq(0.5,0.7,0.1)) resu3<-kfino_fit(datain=merinos1, Tvar="dateNum",Yvar="Poids", doOptim=TRUE,param=param3, verbose=TRUE) # flags are qualitative kfino_plot(resuin=resu3,typeG="quali", Tvar="Day",Yvar="Poids",Ident="IDE") # flags are quantitative kfino_plot(resuin=resu3,typeG="quanti", Tvar="Day",Yvar="Poids",Ident="IDE") ## ----error=TRUE--------------------------------------------------------------- kfino_plot(resuin=resu3,typeG="prediction", Tvar="Day",Yvar="Poids",Ident="IDE") ## ----session,echo=FALSE,message=FALSE, warning=FALSE-------------------------- sessionInfo()