## ----knitr_options, include=FALSE--------------------------------------------- library(knitr) opts_chunk$set(fig.width=7, fig.height=4.5) options(digits=4, scipen=5) ## ----load_data_hidden, include=FALSE------------------------------------------ library(qtl) library(lineup) data(f2cross) data(expr1) data(expr2) data(pmap) data(genepos) ## ----load_libraries, eval=FALSE----------------------------------------------- # library(qtl) # library(lineup) ## ----load_data_shown, eval=FALSE---------------------------------------------- # data(f2cross) # data(expr1) # data(expr2) # data(pmap) # data(genepos) ## ----scale_expr--------------------------------------------------------------- expr1 <- expr1/1000 expr2 <- expr2/1000 ## ----summary_expr------------------------------------------------------------- nrow(expr1) nrow(expr2) ## ----find_commond_ind_expr---------------------------------------------------- eid <- findCommonID(expr1, expr2) length(eid$first) ## ----find_correlated_genes---------------------------------------------------- cor_ee <- corbetw2mat(expr1[eid$first,], expr2[eid$second,], what="paired") ## ----hist_corr_betw_tissues--------------------------------------------------- par(mar=c(5,4,1,1)) hist(cor_ee, breaks=seq(-1, 1, len=101), main="", las=1, xlab="Correlation in gene expression between tissues") ## ----distee------------------------------------------------------------------- d_ee <- distee(expr1[,abs(cor_ee)>0.9], expr2[,abs(cor_ee)>0.9], d.method="cor") ## ----plot_distee, fig.height=9------------------------------------------------ par(mar=c(5,4,2,1)) plot(d_ee) ## ----count_small_selfself----------------------------------------------------- sum(pulldiag(d_ee) < 0.5) ## ----count_large_selfnonself-------------------------------------------------- d_ee_nodiag <- omitdiag(d_ee) sum( !is.na(d_ee_nodiag) & d_ee_nodiag > 0.5) ## ----summary_distee----------------------------------------------------------- summary(d_ee) ## ----plot_expr_dup, fig.width=7----------------------------------------------- par(mar=c(5,4,1,1)) plot(expr1["48",], expr1["76",], xlab="Sample 48, expr1", ylab="Sample 76, expr1", las=1, pch=21, bg="slateblue", cex=0.7) ## ----drop_expr1_sample48------------------------------------------------------ expr1["76",] <- colMeans(expr1[c("48", "76"),]) expr1 <- expr1[rownames(expr1)!="48",] ## ----calc_genoprob------------------------------------------------------------ f2cross <- calc.genoprob(f2cross, step=1, error.prob=0.002) ## ----find_pseudomarkers, warning=FALSE---------------------------------------- pmar <- find.gene.pseudomarker(f2cross, pmap, genepos) ## ----calc_locallod, message=FALSE--------------------------------------------- id1 <- findCommonID(f2cross, expr1) lod1 <- calc.locallod(f2cross[,id1$first], expr1[id1$second,], pmar, verbose=FALSE) id2 <- findCommonID(f2cross, expr2) lod2 <- calc.locallod(f2cross[,id2$first], expr2[id2$second,], pmar, verbose=FALSE) ## ----disteg------------------------------------------------------------------- d_eg_1 <- disteg(f2cross, expr1[, lod1>25], pmar, verbose=FALSE) d_eg_2 <- disteg(f2cross, expr2[, lod2>25], pmar, verbose=FALSE) ## ----summary_g_vs_expr1------------------------------------------------------- summary(d_eg_1) ## ----summary_g_vs_expr2------------------------------------------------------- summary(d_eg_2) ## ----combinedist-------------------------------------------------------------- d_eg <- combinedist(d_eg_1, d_eg_2) summary(d_eg)