## ---- include=FALSE----------------------------------------------------------- library(knitr) opts_chunk$set(fig.width = 6, fig.height = 4) ## ---- message=FALSE----------------------------------------------------------- library(macleish) ## ----------------------------------------------------------------------------- head(whately_2015) tail(whately_2015) ## ---- eval=FALSE-------------------------------------------------------------- # head(orchard_2015) # tail(orchard_2015) ## ---- eval=FALSE-------------------------------------------------------------- # help("etl_extract.etl_macleish") ## ----daily, message=FALSE, warning=FALSE-------------------------------------- library(ggplot2) library(dplyr) library(lubridate) daily <- whately_2015 %>% mutate(the_date = as.Date(when, tz = "EST")) %>% group_by(the_date) %>% summarize( N = n(), avg_temp = mean(temperature), max_temp = max(temperature), min_temp = min(temperature) ) ## ----temp-plot, message=FALSE------------------------------------------------- temp_plot <- ggplot(data = whately_2015, aes(x = when, y = temperature)) + geom_line(color = "lightgray") + geom_line(data = daily, aes( x = as.POSIXct(the_date), y = avg_temp )) + xlab(NULL) + ylab("Temperature (Celsius)") if (require(mgcv)) { temp_plot + geom_smooth() } else { temp_plot } ## ----temp-table--------------------------------------------------------------- monthly_w <- whately_2015 %>% mutate(the_month = month(when, label = TRUE, abbr = FALSE)) %>% group_by(the_month) %>% summarize(avg_temp = mean(temperature)) monthly_o <- orchard_2015 %>% mutate(the_month = month(when, label = TRUE, abbr = FALSE)) %>% group_by(the_month) %>% summarize(avg_temp = mean(temperature)) monthly_w %>% inner_join(monthly_o, by = "the_month") ## ----temp-extremes------------------------------------------------------------ whately_2015 %>% arrange(desc(temperature)) %>% head(1) whately_2015 %>% arrange(temperature) %>% head(1) ## ----------------------------------------------------------------------------- daily <- daily %>% mutate(temp_range = max_temp - min_temp) daily %>% select(temp_range) %>% summary() ## ----------------------------------------------------------------------------- daily %>% arrange(desc(temp_range)) %>% head(1) daily %>% arrange(temp_range) %>% head() ## ----orchard-anolomies-------------------------------------------------------- orchard_2015 %>% filter(month(when) == 11) %>% ggplot(aes(x = when, y = temperature)) + geom_line() ## ----humidity-table----------------------------------------------------------- monthly_w <- whately_2015 %>% mutate(the_month = month(when, label = TRUE, abbr = FALSE)) %>% group_by(the_month) %>% summarize(avg_humidity_w = mean(rel_humidity)) monthly_o <- orchard_2015 %>% mutate(the_month = month(when, label = TRUE, abbr = FALSE)) %>% group_by(the_month) %>% summarize(avg_humidity_o = mean(rel_humidity)) monthly_w %>% inner_join(monthly_o, by = "the_month") ## ---- message=FALSE, warning=FALSE-------------------------------------------- require(clifro) orchard_2015 %>% with(windrose(wind_speed, wind_dir)) ## ---- message=FALSE----------------------------------------------------------- whately_2015 %>% with(windrose(wind_speed, wind_dir)) ## ----------------------------------------------------------------------------- whately_2015 %>% summarize(total_rainfall = sum(rainfall)) ## ----rain-table--------------------------------------------------------------- monthly_w <- whately_2015 %>% mutate(the_month = month(when, label = TRUE, abbr = FALSE)) %>% group_by(the_month) %>% summarize(total_precip_w = sum(rainfall)) monthly_o <- orchard_2015 %>% mutate(the_month = month(when, label = TRUE, abbr = FALSE)) %>% group_by(the_month) %>% summarize(total_precip_o = sum(rainfall)) monthly_w %>% inner_join(monthly_o, by = "the_month") ## ---- message=FALSE----------------------------------------------------------- daily_precip <- whately_2015 %>% mutate(the_date = as.Date(when, tz = "EST")) %>% group_by(the_date) %>% summarize(N = n(), total_precip = sum(rainfall)) %>% mutate( cum_precip = cumsum(total_precip), cum_rescale = (cum_precip / max(cum_precip)) * max(total_precip) ) ## ----daily-precip, message=FALSE---------------------------------------------- ggplot( data = daily_precip, aes(x = the_date, y = total_precip) ) + geom_bar(stat = "identity") + geom_line(aes(y = cum_rescale), color = "blue") + ylab("Daily Precipitation (mm)") + xlab(NULL) ## ----------------------------------------------------------------------------- names(macleish_layers) ## ---- eval=FALSE, message=FALSE----------------------------------------------- # library(leaflet) # leaflet() %>% # addTiles() %>% # addPolygons( # data = macleish_layers[["boundary"]], # weight = 1 # ) %>% # addPolygons( # data = macleish_layers[["buildings"]], # weight = 1 # ) %>% # addMarkers( # data = filter(macleish_layers[["landmarks"]], grepl("Met", Label)), # popup = ~Label # )