## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----comment="", prompt=TRUE, message=FALSE----------------------------------- library(marked) library(ggplot2) data(dipper) model=crm(dipper) ## ----comment="",prompt=TRUE--------------------------------------------------- model ## ----comment="",prompt=TRUE,tidy=FALSE---------------------------------------- model=cjs.hessian(model) model ## ----comment="",prompt=TRUE,tidy=FALSE,results='hide'------------------------- dipper.proc=process.data(dipper) dipper.ddl=make.design.data(dipper.proc) Phi.sex=list(formula=~sex) model=crm(dipper.proc,dipper.ddl,model.parameters=list(Phi=Phi.sex), accumulate=FALSE) ## ----comment="",prompt=TRUE,tidy=FALSE,results='hide',message=FALSE----------- dipper.proc=process.data(dipper) dipper.ddl=make.design.data(dipper.proc) fit.models=function() { Phi.sex=list(formula=~sex) Phi.time=list(formula=~time) p.sex=list(formula=~sex) p.dot=list(formula=~1) cml=create.model.list(c("Phi","p")) results=crm.wrapper(cml,data=dipper.proc, ddl=dipper.ddl, external=FALSE,accumulate=FALSE) return(results) } dipper.models=fit.models() ## ----comment="",prompt=TRUE,tidy=FALSE---------------------------------------- dipper.models ## ----comment="",prompt=TRUE,tidy=FALSE---------------------------------------- dipper.models[[1]] dipper.models[["Phi.sex.p.dot"]] ## ----comment="",prompt=TRUE,tidy=FALSE,results='hide',echo=FALSE, message=FALSE---- dipper.proc=process.data(dipper) dipper.ddl=make.design.data(dipper.proc) fit.models=function() { Phi.sex=list(formula=~sex) Phi.time=list(formula=~time) p.sex=list(formula=~sex) p.dot=list(formula=~1) cml=create.model.list(c("Phi","p")) results=crm.wrapper(cml,data=dipper.proc, ddl=dipper.ddl, external=TRUE,accumulate=FALSE, replace=TRUE) return(results) } dipper.models=fit.models() ## ----comment="",prompt=TRUE,tidy=FALSE---------------------------------------- model=load.model(dipper.models[[1]]) model ## ----comment="",prompt=TRUE,tidy=FALSE---------------------------------------- data(dipper) # Add a dummy weight field which are random values from 1 to 10 set.seed(123) dipper$weight=round(runif(nrow(dipper),0,9),0)+1 # Add Flood covariate Flood=matrix(rep(c(0,1,1,0,0,0),each=nrow(dipper)),ncol=6) colnames(Flood)=paste("Flood",1:6,sep="") dipper=cbind(dipper,Flood) # Add td covariate, but exclude first release as a capture # splitCH and process.ch are functions in the marked package td=splitCH(dipper$ch) td=td[,1:6] releaseocc=process.ch(dipper$ch)$first releaseocc=cbind(1:length(releaseocc),releaseocc) releaseocc=releaseocc[releaseocc[,2]% kableExtra::kable_styling(full_width = FALSE) %>% kableExtra::add_header_above(c(" "=1, "Time" = 3, "Time" = 3), line = FALSE) %>% kableExtra::add_header_above(c(" "=1, "$\\phi$" = 3, "$p$" = 3)) %>% kableExtra::column_spec(c(1,4), border_right = TRUE) %>% kableExtra::column_spec(1:7, width_min="3em", monospace = TRUE) ## ----eval=FALSE--------------------------------------------------------------- # Phiprime = 1-Fplus + Phi*Fplus # Phistar = t(apply(Phiprime,1,cumprod)) # pprime = (1-Fplus)+Fplus*(C*p+(1-C)*(1-p)) # pstar = t(apply(pprime,1,cumprod)) # pomega = rowSums(L*M*Phistar*pstar) # lnl = sum(log(pomega))