## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE,comment = "#",fig.width = 5, fig.height = 4,fig.align = "center", eval = TRUE) ## ----------------------------------------------------------------------------- library(ashr) library(mashr) set.seed(1) simdata = simple_sims(10000,5,1) # simulates data on 40k tests # identify a subset of strong tests m.1by1 = mash_1by1(mash_set_data(simdata$Bhat,simdata$Shat)) strong.subset = get_significant_results(m.1by1,0.05) # identify a random subset of 5000 tests random.subset = sample(1:nrow(simdata$Bhat),5000) ## ----------------------------------------------------------------------------- data.temp = mash_set_data(simdata$Bhat[random.subset,],simdata$Shat[random.subset,]) Vhat = estimate_null_correlation_simple(data.temp) rm(data.temp) ## ----------------------------------------------------------------------------- data.random = mash_set_data(simdata$Bhat[random.subset,],simdata$Shat[random.subset,],V=Vhat) data.strong = mash_set_data(simdata$Bhat[strong.subset,],simdata$Shat[strong.subset,], V=Vhat) ## ----------------------------------------------------------------------------- U.pca = cov_pca(data.strong,5) U.ed = cov_ed(data.strong, U.pca) ## ----------------------------------------------------------------------------- U.c = cov_canonical(data.random) m = mash(data.random, Ulist = c(U.ed,U.c), outputlevel = 1) ## ----------------------------------------------------------------------------- m2 = mash(data.strong, g=get_fitted_g(m), fixg=TRUE) head(get_lfsr(m2))