## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE,comment = "#",fig.width = 5, fig.height = 4,fig.align = "center", eval = FALSE) ## ----------------------------------------------------------------------------- # library(ashr) # library(mashr) # set.seed(1) # simdata = simple_sims2(1000,1) # true.U1 = cbind(c(1,1,0,0,0),c(1,1,0,0,0),rep(0,5),rep(0,5),rep(0,5)) # true.U2 = cbind(rep(0,5),rep(0,5),c(0,0,1,1,1),c(0,0,1,1,1),c(0,0,1,1,1)) # U.true = list(true.U1 = true.U1, true.U2 = true.U2) ## ---- collapse = TRUE--------------------------------------------------------- # data = mash_set_data(simdata$Bhat, simdata$Shat) # m.1by1 = mash_1by1(data) # strong = get_significant_results(m.1by1) # U.c = cov_canonical(data) # U.pca = cov_pca(data,5,strong) # U.ed = cov_ed(data,U.pca,strong) # # # Computes covariance matrices based on extreme deconvolution, # # initialized from PCA. # m.c = mash(data, U.c) # m.ed = mash(data, U.ed) # m.c.ed = mash(data, c(U.c,U.ed)) # m.true = mash(data, U.true) # # print(get_loglik(m.c),digits = 10) # print(get_loglik(m.ed),digits = 10) # print(get_loglik(m.c.ed),digits = 10) # print(get_loglik(m.true),digits = 10)