## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(mtsta) ## ----echo=FALSE--------------------------------------------------------------- summ_df <- tibble::tribble( ~Conservation.status, ~tag, ~Number.of.species, "Critically Endangered", "CR", 1L, "Endangered", "EN", 42L, "Vulnerable", "VU", 27L, "Near Threatened", "NT", 20L, "Least Concern", "LC", 29L, "Data Deficient", "DD", 8L, "Not Evaluated", "NE", 0L ) summ_df |> dplyr::select(1,3) |> janitor::adorn_totals() |> knitr::kable() ## ----summary_2, echo=FALSE, fig.align='center'-------------------------------- summ_2 <- tibble::tribble( ~Country, ~CR, ~EN, ~VU, ~NT, ~LC, ~DD, ~Subtotal, ~NE, ~Total, "Ecuador", 2L, 36L, 52L, 9L, 5L, 1L, 105L, 61L, 166L, "Peru", 9L, 31L, 15L, 2L, 3L, 10L, 70L, 50L, 120L, "Colombia", 4L, 5L, 5L, 2L, 1L, 0L, 17L, 60L, 77L, "Bolivia", 0L, 5L, 1L, 0L, 0L, 1L, 7L, 94L, 101L, "Argentina", 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 3L, "Venezuela", 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, "Total endemic", 15L, 77L, 73L, 13L, 9L, 12L, 199L, 268L, 467L, "Regional assessment", 1L, 42L, 27L, 20L, 29L, 8L, 127L, 0L, 127L, "Total Andes", 16L, 119L, 100L, 33L, 38L, 20L, 326L, 268L, 594L ) summ_2 |> knitr::kable() ## ----echo=FALSE--------------------------------------------------------------- summarie_3 <- mtsta::mtsta_distribution |> dplyr::select(accepted_name, distribution) |> dplyr::mutate(distribution = dplyr::case_when( stringr::str_detect(distribution, "\\(Bolivia,\\) ") ~ stringr::str_remove(distribution, "\\(Bolivia,\\) "), stringr::str_detect(distribution, "\\(Colombia,\\) ") ~ stringr::str_remove(distribution, "\\(Colombia,\\) "), stringr::str_detect(distribution, "\\(Colombia\\) \\- ") ~ stringr::str_remove(distribution, "\\(Colombia\\) \\- "), stringr::str_detect(distribution, " \\- \\(Peru \\- Venezuela\\)") ~ stringr::str_remove(distribution, " \\- \\(Peru \\- Venezuela\\)"), TRUE ~ distribution )) |> tidyr::separate_rows(distribution, sep = " - ") |> dplyr::group_by(distribution) |> dplyr::summarise(n_species = dplyr::n_distinct(accepted_name)) ## ----echo=FALSE, fig.height=5, fig.width= 8----------------------------------- summarie_3 |> ggplot2::ggplot(ggplot2::aes(forcats::fct_reorder(distribution, n_species, .desc = TRUE), n_species)) + ggplot2::geom_col() + ggplot2::labs(y = "Species per country", x = "Countries") + ggplot2::theme_bw()