## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#", fig.width=7, fig.height=5 ) library(knitr) ## ----load_dependencies, message=FALSE----------------------------------------- library(mvMAPIT) library(ggplot2) library(dplyr) ## ----read_data, eval = FALSE-------------------------------------------------- # data.files <- c("elife-71393-fig1-data1-v3.csv", "elife-71393-fig1-data2-v3.csv") # # data1 <- read.csv(file = data.files[1]) # data2 <- read.csv(file = data.files[2]) # # data1names <- c(30, 35, 36, 57, 64, 65, 66, 79, 82, 83, 84, 85, 92, 95, 103, 113) # data2names <- c(29, 35, 65, 66, 69, 82, 83, 84, 85, 87, 112.1) # data1map <- as.data.frame(list( # pos = sprintf("pos%d", c(1:16)), # term = data1names # )) # data2map <- as.data.frame(list( # pos = sprintf("pos%d", c(1:11)), # term = data2names # )) # phenotype1 <- data1[, endsWith(names(data1), "mean")] # genotype1 <- data1[, startsWith(names(data1), "pos")] # # phenotype2 <- data2[, endsWith(names(data2), "mean")] # genotype2 <- data2[, startsWith(names(data2), "pos")] # # colnames(genotype1) <- data1names # colnames(genotype2) <- data2names # # CR9114 <- list("phenotype" = phenotype1, "genotype" = genotype1, "map" = data1map) # CR6261 <- list("phenotype" = phenotype2, "genotype" = genotype2, "map" = data2map) ## ----run_mvmapit, eval = FALSE------------------------------------------------ # mvmapit_CR9114 <- mvmapit( # t(CR9114$genotype), # t(CR9114$phenotype), # test = "hybrid" # ) # mvmapit_CR6261 <- mvmapit( # t(CR6261$genotype), # t(CR6261$phenotype), # test = "hybrid" # ) ## ----manhattan---------------------------------------------------------------- for_facetgrid_row <- as_labeller(c( `1` = "Trait #1", `2` = "Trait #2", `3` = "Covariance", `4` = "Combined" )) phillips_data$fisher$colorf <- factor(phillips_data$fisher$color, labels = c("1", "Significant")) gg_fisher <- phillips_data$fisher %>% ggplot(aes(x = position, y = -log10(pplot))) + geom_point(aes(colour = colorf), size = 1) + scale_color_manual(values = c("#1b9e77", "#2c2c2c"), breaks = c("Significant")) + scale_y_continuous(breaks = c(0, 5, 10), labels = c("0", "5", ">10")) + geom_hline(aes(yintercept = -log10(threshold), linetype = "Bonferroni"), color = "#d95f02") + scale_linetype_manual(name = "", values = c('dashed')) + theme_bw() + facet_grid(row ~ species, labeller = labeller(row = for_facetgrid_row)) + theme( panel.grid.major.x = element_blank(), legend.position = "bottom", text = element_text(family = "Arial") ) + labs(x = "Position", y = "-log10(p)", colour = NULL) show(gg_fisher) ## ----CR6261------------------------------------------------------------------- gg_CR6261 <- ggplot(phillips_data$regression$CR6261, aes(res_x, res_y, fill = effect)) + geom_tile() + scale_fill_gradient2( high = "#b2182b", mid = "white", low = "#2166ac", midpoint = 0, space = "Lab", na.value = "grey50", guide = "colourbar" ) + theme_bw() + theme(legend.position = "bottom") show(gg_CR6261) ## ----CR9114------------------------------------------------------------------- gg_CR9114 <- ggplot(phillips_data$regression$CR9114, aes(res_x, res_y, fill = effect)) + geom_tile() + scale_fill_gradient2( high = "#b2182b", mid = "white", low = "#2166ac", midpoint = 0, space = "Lab", na.value = "#000000", guide = "colourbar", limits = c(min(phillips_data$regression$CR6261$effect), max(phillips_data$regression$CR6261$effect)) ) + theme_bw() + theme(legend.position = "bottom") show(gg_CR9114)