## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#", fig.width=7, fig.height=5 ) library(knitr) ## ----load_dependencies, message=FALSE----------------------------------------- library(mvMAPIT) ## ----simulate_genotypes, eval = FALSE----------------------------------------- # set.seed(1234) # # n_samples <- 2938 # n_snp <- 5747 # # maf <- 0.05 + 0.45 * runif(n_snp) # random_minor_allele_counts <- (runif(n_samples * n_snp) < maf) + (runif(n_samples * n_snp) < maf) # genotype_data <- matrix(random_minor_allele_counts, # nrow = n_samples, # ncol = n_snp, # byrow = TRUE, # ) # # sample_names <- seq_len(n_samples) %>% sprintf(fmt = "id%04d") # snp_names <- seq_len(n_snp) %>% sprintf(fmt = "snp%04d") # # colnames(genotype_data) <- snp_names # rownames(genotype_data) <- sample_names ## ----simulation_parameters, eval = FALSE-------------------------------------- # seed <- 67132 # d <- 2 # PVE <- 0.6 # rho <- 0.2 # n_causal <- 1000 # n_trait_specific <- 0 # n_pleiotropic <- 10 # group_ratio_pleiotropic <- 1 # epistatic_correlation <- 0.9 # maf <- 0.05 # simulated_data <- simulate_traits( # genotype_data, # n_causal = n_causal, # n_trait_specific = n_trait_specific, # n_pleiotropic = n_pleiotropic, # d = d, # H2 = PVE, # rho = rho, # epistatic_correlation = epistatic_correlation, # group_ratio_pleiotropic = group_ratio_pleiotropic, # maf_threshold = maf, # seed = seed # )