## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # library(nlrx) # # Windows default NetLogo installation path (adjust to your needs!): # netlogopath <- file.path("C:/Program Files/NetLogo 6.0.3") # modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo") # outpath <- file.path("C:/out") # # Unix default NetLogo installation path (adjust to your needs!): # netlogopath <- file.path("/home/NetLogo 6.0.3") # modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo") # outpath <- file.path("/home/out") # # nl <- nl(nlversion = "6.0.3", # nlpath = netlogopath, # modelpath = modelpath, # jvmmem = 1024) ## ----eval=FALSE--------------------------------------------------------------- # nl@experiment <- experiment(expname="wolf-sheep", # outpath=outpath, # repetition=1, # tickmetrics="true", # idsetup="setup", # idgo="go", # runtime=50, # evalticks=seq(40,50), # metrics=c("count sheep", "count wolves", "count patches with [pcolor = green]"), # variables = list('initial-number-sheep' = list(min=50, max=150, qfun="qunif"), # 'initial-number-wolves' = list(min=50, max=150, qfun="qunif")), # constants = list("model-version" = "\"sheep-wolves-grass\"", # "grass-regrowth-time" = 30, # "sheep-gain-from-food" = 4, # "wolf-gain-from-food" = 20, # "sheep-reproduce" = 4, # "wolf-reproduce" = 5, # "show-energy?" = "false")) ## ----eval=FALSE--------------------------------------------------------------- # nl@simdesign <- simdesign_lhs(nl=nl, # samples=100, # nseeds=3, # precision=3) ## ----eval=FALSE--------------------------------------------------------------- # # Evaluate nl object: # eval_variables_constants(nl) # print(nl) # # # Run all simulations (loop over all siminputrows and simseeds) # results <- run_nl_all(nl) ## ----eval=FALSE--------------------------------------------------------------- # # Attach results to nl object: # setsim(nl, "simoutput") <- results # # # Write output to outpath of experiment within nl # write_simoutput(nl) # # # Do further analysis: # analyze_nl(nl) ## ----eval=FALSE--------------------------------------------------------------- # library(nlrx) # # Windows default NetLogo installation path (adjust to your needs!): # netlogopath <- file.path("C:/Program Files/NetLogo 6.0.3") # modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo") # outpath <- file.path("C:/out") # # Unix default NetLogo installation path (adjust to your needs!): # netlogopath <- file.path("/home/NetLogo 6.0.3") # modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo") # outpath <- file.path("/home/out") # # # Setup nl object # nl <- nl(nlversion = "6.0.3", # nlpath = netlogopath, # modelpath = modelpath, # jvmmem = 1024) # # # Attach experiment # nl@experiment <- experiment(expname="wolf-sheep", # outpath=outpath, # repetition=1, # tickmetrics="true", # idsetup="setup", # idgo="go", # runtime=50, # evalticks=seq(40,50), # metrics=c("count sheep", "count wolves", "count patches with [pcolor = green]"), # variables = list('initial-number-sheep' = list(min=50, max=150, qfun="qunif"), # 'initial-number-wolves' = list(min=50, max=150, qfun="qunif")), # constants = list("model-version" = "\"sheep-wolves-grass\"", # "grass-regrowth-time" = 30, # "sheep-gain-from-food" = 4, # "wolf-gain-from-food" = 20, # "sheep-reproduce" = 4, # "wolf-reproduce" = 5, # "show-energy?" = "false")) # # # Attach simdesign # nl@simdesign <- simdesign_lhs(nl=nl, # samples=100, # nseeds=3, # precision=3) # # # Evaluate nl object: # eval_variables_constants(nl) # print(nl) # # # Run all simulations (loop over all siminputrows and simseeds) # results <- run_nl_all(nl) # # # Attach results to nl object: # setsim(nl, "simoutput") <- results # # # Write output to outpath of experiment within nl # write_simoutput(nl) # # # Do further analysis: # analyze_nl(nl)