## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(ordinalTables) ## ----dogs--------------------------------------------------------------------- print(dogs) ## ----kappa_dogs--------------------------------------------------------------- dogs_kappa <- kappa(dogs) print(dogs_kappa) ## ----agresti_kappa------------------------------------------------------------ result <- Agresti_kappa_agreement(dogs) ## ----schuster_kappa----------------------------------------------------------- result <- Schuster_symmetric_rater_agreement_model(vision_data) ## ----agresti_kappa_vision----------------------------------------------------- result <- Agresti_kappa_agreement(vision_data) ## ----schuster_kappa_budget---------------------------------------------------- s_result <- Schuster_symmetric_rater_agreement_model(budget_actual) ## ----agresti_kappa_budget----------------------------------------------------- a_result <- Agresti_kappa_agreement(budget_actual) ## ----stuart_budget------------------------------------------------------------ stuart_result <- Stuart_marginal_homogeneity(budget_actual) ## ----main_effects------------------------------------------------------------- result <- von_Eye_main_effect(dogs) ## ----weight_response---------------------------------------------------------- result2 <- von_Eye_equal_weighted_diagonal(dogs) ## ----weights------------------------------------------------------------------ w <- c(3, 1, 1, 3) x <- log_linear_main_effect_design(dogs) x_prime <- log_linear_add_all_diagonals(dogs, x) x_prime_prime <- von_Eye_weight_by_response_category_design(dogs, x_prime, w) result3 <- log_linear_fit(dogs, x_prime_prime) ## ----all_diagonals------------------------------------------------------------ result4 <- von_Eye_diagonal(dogs) ## ----add linear_by_linear----------------------------------------------------- linear <- log_linear_create_linear_by_linear(dogs, centered=TRUE) print(linear) x <- log_linear_main_effect_design(dogs) x_new <- log_linear_append_column(x, linear) print(x_new) result5 <- log_linear_fit(dogs, x_new) ## ----von_Eye_linear_by_linear------------------------------------------------- result5b <- von_Eye_linear_by_linear(dogs) ## ----agresti_rating_model----------------------------------------------------- result6 <- von_Eye_diagonal_linear_by_linear(dogs) ## ----final_model-------------------------------------------------------------- x <- log_linear_equal_weight_agreement_design(dogs) linear <- log_linear_create_linear_by_linear(dogs, centered=TRUE) x_final <- log_linear_append_column(x, linear) result8 <- log_linear_fit(dogs, x_final)