## ----ex1---------------------------------------------------------------------- library(permutes) head(MMN) nrow(MMN) #how many observations? length(unique(MMN$Time)) #how many timepoints? ## ----permDry,eval=F----------------------------------------------------------- # perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,Oz,O2,PO4, # P4,P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ Deviant * Session | Time, # data=MMN) # ## (output not shown) ## ----perm,eval=F-------------------------------------------------------------- # library(doParallel) # cl <- makeCluster(2) #or more # registerDoParallel(cl) # perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,Oz,O2,PO4, # P4,P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ Deviant * Session | Time,data=MMN, # parallel=TRUE) # ## (output not shown) ## ----interceptForDeterminism,cache=F,results='hide',echo=F-------------------- set.seed(10) perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,Oz,O2,PO4, P4,P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ Deviant * Session | Time, data=MMN) ## ----permplot----------------------------------------------------------------- plot(perms) ## ----es----------------------------------------------------------------------- plot(perms,sig='p') ## ----agg---------------------------------------------------------------------- ROI <- c('Fp1','AF3','F7','F3','FC1','FC5','C3','CP1', 'CP5','CP6','CP2','C4', 'FC6','FC2','F4','F8','AF4','Fp2','Fz') head(perms) #what do we have? perms2 <- perms[perms$Factor == 'Deviant' & perms$Measure %in% ROI,] perms2$sig <- perms2$p < .05 perms2 <- aggregate(sig ~ Time,perms2,sum) plot(perms2$Time,perms2$sig) #look at all windows print(perms2[perms2$sig > 10,'Time']) #our arbitrary criterion ## ----verif-------------------------------------------------------------------- print(unique(MMN$Time)[c(88,136)]) ## ----lmer--------------------------------------------------------------------- data <- MMN[MMN$Time > 171 & MMN$Time < 265,] data$amplitude <- rowMeans(data[,ROI]) data <- aggregate(amplitude ~ Deviant + Session + Subject,data,mean) model <- perm.lmer(amplitude ~ Deviant * Session + (Deviant + Session | Subject),data) ## ----summary------------------------------------------------------------------ print(model)