## ----setup, echo=FALSE, message=FALSE, warning=FALSE-------------------------- require(phylter) require(ape) ## ---- eval = FALSE------------------------------------------------------------ # install.packages("remotes") ## ---- eval = FALSE------------------------------------------------------------ # remotes::install_github("damiendevienne/phylter") ## ---- eval = FALSE------------------------------------------------------------ # library("phylter") ## ---- eval = FALSE------------------------------------------------------------ # if (!requireNamespace("ape", quietly = TRUE)) # install.packages("ape") # trees <- ape::read.tree("treefile.tre") ## ---- eval = FALSE------------------------------------------------------------ # results <- phylter(trees, gene.names = names) ## ---- eval = FALSE------------------------------------------------------------ # phylter(X, bvalue = 0, distance = "patristic", k = 3, k2 = k, Norm = "median", # Norm.cutoff = 0.001, gene.names = NULL, test.island = TRUE, # verbose = TRUE, stop.criteria = 1e-5, InitialOnly = FALSE, # normalizeby = "row", parallel = TRUE) ## ---- eval = FALSE------------------------------------------------------------ # results$Final$Outliers ## ---- eval = FALSE------------------------------------------------------------ # # Get a summary: nb of outliers, gain in concordance, etc. # summary(results) # # # Show the number of species in each gene, and how many per gene are outliers # plot(results, "genes") # # # Show the number of genes where each species is found, and how many are outliers # plot(results, "species") # # # Compare before and after genes $\times$ species matrices, highlighting missing data and outliers # # identified (not efficient for large datasets) # plot2WR(results) # # # Plot the dispersion of data before and after outlier removal. One dot represents one # # gene $\times$ species association # plotDispersion(results) # # # Plot the genes $\times$ genes matrix showing pairwise correlation between genes # plotRV(results) # # # Plot optimization scores during optimization # plotopti(results) ## ---- eval = FALSE------------------------------------------------------------ # write.phylter(results, file = "phylter.out") ## ---- results='hide'---------------------------------------------------------- data(carnivora, package = "phylter") results <- phylter(carnivora, parallel = FALSE) # for example ## ----------------------------------------------------------------------------- summary(results) ## ----------------------------------------------------------------------------- results$Initial results$Final ## ----------------------------------------------------------------------------- results$Final$Outliers ## ---- eval = FALSE------------------------------------------------------------ # write.phylter(results)