## ----setup-------------------------------------------------------------------- predicts <- predictsr::GetPredictsData(extract = c(2016, 2022)) str(predicts) ## ----------------------------------------------------------------------------- taxa <- predicts[ !duplicated(predicts[, c("Source_ID", "Study_name", "Taxon_name_entered")]), ] species_counts <- length( unique(taxa[taxa$Rank %in% c("Species", "Infraspecies"), "Taxon"]) ) + nrow(taxa[!taxa$Rank %in% c("Species", "Infraspecies"), ]) print(glue::glue( "This database has {length(unique(predicts$SS))} studies across ", "{length(unique(predicts$SSBS))} sites, in ", "{length(unique(predicts$Country))} countries, and with ", "{species_counts} species." )) ## ----------------------------------------------------------------------------- print(glue::glue( "Earliest sample collection (midpoint): {min(predicts$Sample_midpoint)}, ", "latest sample collection (midpoint): {max(predicts$Sample_midpoint)}" )) ## ----------------------------------------------------------------------------- summaries <- predictsr::GetSitelevelSummaries(extract = c(2016, 2022)) str(summaries) ## ----------------------------------------------------------------------------- print(names(predicts)[!(names(predicts) %in% names(summaries))]) ## ----------------------------------------------------------------------------- summaries_rep <- predicts |> dplyr::mutate( Higher_taxa = paste(sort(unique(Higher_taxon)), collapse = ","), N_samples = length(Measurement), Rescaled_sampling_effort = mean(Rescaled_sampling_effort), .by = SSBS ) |> dplyr::select( dplyr::all_of(names(summaries)) ) |> dplyr::distinct() |> dplyr::arrange(SSBS) summaries_copy <- summaries |> subset(SSBS %in% summaries_rep$SSBS) |> dplyr::arrange(SSBS) all.equal(summaries_copy, summaries_rep) ## ----------------------------------------------------------------------------- descriptions <- predictsr::GetColumnDescriptions() str(descriptions) ## ----echo = FALSE, results = 'asis'------------------------------------------- descriptions_sub <- subset( descriptions, Column %in% c( "Source_ID", "SS", "Block", "SSBS", "Diversity_metric_type", "Measurement" ) ) for (i in seq_along(descriptions_sub$Column)) { cat( paste0( "* `", descriptions_sub$Column[i], "` (`", descriptions_sub$Type[i], "`): " ) ) notes <- descriptions_sub$Notes[i] |> (\(s) gsub("\\*", " -", s))() |> (\(s) gsub("\n\n", " \n", s))() |> (\(s) gsub("\n", " \n", s))() if (notes == " ") { notes <- "As title." } cat(notes) cat(" \n") }