## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Create sample data # dat <- read.table(header = TRUE, # text = 'x y z g # 6 A 60 P # 6 A 70 P # 2 A 100 P # 2 B 10 P # 3 B 67 Q # 2 C 81 Q # 3 C 63 Q # 5 C 55 Q') # # # View sample data # dat # x y z g # 1 6 A 60 P # 2 6 A 70 P # 3 2 A 100 P # 4 2 B 10 P # 5 3 B 67 Q # 6 2 C 81 Q # 7 3 C 63 Q # 8 5 C 55 Q # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Turn off printing for CRAN checks # options("procs.print" = FALSE) # # # No parameters # proc_means(dat) # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Specific variable # proc_means(dat, var = x) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Custom statistics options # proc_means(dat, stats = v(median, sum, q1, q3)) # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Output dataset using "report" option # res1 <- proc_means(dat, # stats = v(median, sum, q1, q3), # output = report) # # # View results # res1 # # VAR MEDIAN SUM Q1 Q3 # # 1 x 3 29 2.0 5.5 # # 2 z 65 506 57.5 75.5 # # # # Output dataset using "out" option # res2 <- proc_means(dat, # stats = v(median, sum, q1, q3), # output = out) # # # View results # res2 # # TYPE FREQ VAR MEDIAN SUM Q1 Q3 # # 1 0 8 x 3 29 2.0 5.5 # # 2 0 8 z 65 506 57.5 75.5 # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # # Turn off TYPE and FREQ variables # res3 <- proc_means(dat, # stats = v(median, sum, q1, q3), # output = all, # options = v(notype, nofreq)) # # # View results # res3 # # VAR MEDIAN SUM Q1 Q3 # # 1 x 3 29 2.0 5.5 # # 2 z 65 506 57.5 75.5 ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Class grouping # res1 <- proc_means(dat, stats = v(median, sum, q1, q3), # class = y, options = v(maxdec = 4)) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # View results - class # res1 # # CLASS TYPE FREQ VAR MEDIAN SUM Q1 Q3 # # 1 0 8 x 3.0 29 2.0 5.5 # # 2 0 8 z 65.0 506 57.5 75.5 # # 3 A 1 3 x 6.0 14 2.0 6.0 # # 4 A 1 3 z 70.0 230 60.0 100.0 # # 5 B 1 2 x 2.5 5 2.0 3.0 # # 6 B 1 2 z 38.5 77 10.0 67.0 # # 7 C 1 3 x 3.0 10 2.0 5.0 # # 8 C 1 3 z 63.0 199 55.0 81.0 # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # By grouping # res2 <- proc_means(dat, stats = v(median, sum, q1, q3), # by = y, options = v(maxdec = 4)) # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # View results - by # res2 # # BY TYPE FREQ VAR MEDIAN SUM Q1 Q3 # # 1 A 0 3 x 6.0 14 2 6 # # 2 A 0 3 z 70.0 230 60 100 # # 3 B 0 2 x 2.5 5 2 3 # # 4 B 0 2 z 38.5 77 10 67 # # 5 C 0 3 x 3.0 10 2 5 # # 6 C 0 3 z 63.0 199 55 81 ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Class grouping - two variables # res1 <- proc_means(dat, stats = v(median, sum, q1, q3), # class = v(g, y), options = v(maxdec = 0)) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # View results - two class variables # res1 # # CLASS1 CLASS2 TYPE FREQ VAR MEDIAN SUM Q1 Q3 # # 1 0 8 x 3.0 29 2.0 5.5 # # 2 0 8 z 65.0 506 57.5 75.5 # # 3 A 1 3 x 6.0 14 2.0 6.0 # # 4 A 1 3 z 70.0 230 60.0 100.0 # # 5 B 1 2 x 2.5 5 2.0 3.0 # # 6 B 1 2 z 38.5 77 10.0 67.0 # # 7 C 1 3 x 3.0 10 2.0 5.0 # # 8 C 1 3 z 63.0 199 55.0 81.0 # # 9 P 2 4 x 4.0 16 2.0 6.0 # # 10 P 2 4 z 65.0 240 35.0 85.0 # # 11 Q 2 4 x 3.0 13 2.5 4.0 # # 12 Q 2 4 z 65.0 266 59.0 74.0 # # 13 P A 3 3 x 6.0 14 2.0 6.0 # # 14 P A 3 3 z 70.0 230 60.0 100.0 # # 15 P B 3 1 x 2.0 2 2.0 2.0 # # 16 P B 3 1 z 10.0 10 10.0 10.0 # # 17 Q B 3 1 x 3.0 3 3.0 3.0 # # 18 Q B 3 1 z 67.0 67 67.0 67.0 # # 19 Q C 3 3 x 3.0 10 2.0 5.0 # # 20 Q C 3 3 z 63.0 199 55.0 81.0 ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # By grouping - two variables # res2 <- proc_means(dat, stats = v(median, sum, q1, q3), # by = v(g, y), options = v(maxdec = 0)) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # View results - two by variables # res2 # # BY1 BY2 TYPE FREQ VAR MEDIAN SUM Q1 Q3 # # 1 P A 0 3 x 6 14 2 6 # # 2 P A 0 3 z 70 230 60 100 # # 3 P B 0 1 x 2 2 2 2 # # 4 P B 0 1 z 10 10 10 10 # # 5 Q B 0 1 x 3 3 3 3 # # 6 Q B 0 1 z 67 67 67 67 # # 7 Q C 0 3 x 3 10 2 5 # # 8 Q C 0 3 z 63 199 55 81 ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # By grouping - by and class # res3 <- proc_means(dat, stats = v(median, sum, q1, q3), # by = g, # class = y, # options = v(maxdec = 0)) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # View results - by and class # res3 # # BY CLASS TYPE FREQ VAR MEDIAN SUM Q1 Q3 # # 1 P 0 4 x 4 16 2.0 6 # # 2 P 0 4 z 65 240 35.0 85 # # 3 P A 1 3 x 6 14 2.0 6 # # 4 P A 1 3 z 70 230 60.0 100 # # 5 P B 1 1 x 2 2 2.0 2 # # 6 P B 1 1 z 10 10 10.0 10 # # 7 Q 0 4 x 3 13 2.5 4 # # 8 Q 0 4 z 65 266 59.0 74 # # 9 Q B 1 1 x 3 3 3.0 3 # # 10 Q B 1 1 z 67 67 67.0 67 # # 11 Q C 1 3 x 3 10 2.0 5 # # 12 Q C 1 3 z 63 199 55.0 81 # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Shape wide # res1 <- proc_means(dat, stats = v(median, sum, q1, q3), # output = wide) # # # Wide results # res1 # # TYPE FREQ VAR MEDIAN SUM Q1 Q3 # # 1 0 8 x 3 29 2.0 5.5 # # 2 0 8 z 65 506 57.5 75.5 # # # Shape long # res2 <- proc_means(dat, stats = v(median, sum, q1, q3), # output = long) # # # Long results # res2 # # TYPE FREQ STAT x z # # 1 0 8 MEDIAN 3.0 65.0 # # 2 0 8 SUM 29.0 506.0 # # 3 0 8 Q1 2.0 57.5 # # 4 0 8 Q3 5.5 75.5 # # # Shape stacked # res3 <- proc_means(dat, stats = v(median, sum, q1, q3), # output = stacked) # # # Stacked results # res3 # # TYPE FREQ VAR STAT VALUES # # 1 0 8 x MEDIAN 3.0 # # 2 0 8 x SUM 29.0 # # 3 0 8 x Q1 2.0 # # 4 0 8 x Q3 5.5 # # 5 0 8 z MEDIAN 65.0 # # 6 0 8 z SUM 506.0 # # 7 0 8 z Q1 57.5 # # 8 0 8 z Q3 75.5 #