## ----echo = FALSE, message = FALSE-------------------------------------------- knitr::opts_chunk$set(collapse = T, comment = "#>") options(tibble.print_min = 4L, tibble.print_max = 4L) library(rSEA) ## ----data_sim----------------------------------------------------------------- set.seed(753) #to get the same result as you repeat names<-sapply(1:300, function(i) paste0( combn(letters, 2)[,i], collapse = "")) # a vector of two-letter names p<-c(runif(100, 0, 1)^6,runif(200, 0, 1)) # a vector of random p-values, the first 100 are smaller simdat<-data.frame(pvals=p, ids=names, stringsAsFactors=FALSE) #the dataframe head(simdat) #take a look at the dataset pathsize<-floor(runif(50, 10, 60)) #generate a vector of random pathway sizes between 10 and 60 mocklist<-lapply(pathsize,function(x) sample(names,size=x)) # create a pseudo list of pathways ## ----setTDP_chunk1------------------------------------------------------------ require(rSEA) #load rSEA #setTDP(pvals, ids, data=simdat) setTDP(simdat$pvals, simdat$ids) ## ----setTDP_chunk2------------------------------------------------------------ require(rSEA) #load rSEA setTDP(simdat$pvals, simdat$ids, set=mocklist[[3]]) ## ----setTest_chunk1----------------------------------------------------------- require(rSEA) #selfcontained test of all features setTest(pvals, ids, data=simdat, testype = "selfcontained") #default comp. test setTest(pvals, ids, data=simdat, set=mocklist[[3]], testype = "competitive") #custom comp. test setTest(pvals, ids, data=simdat, set=mocklist[[3]], testype = "competitive", testvalue = 0.5) ## ----SEA_chunk1--------------------------------------------------------------- require(rSEA) #load rSEA testchart1<-SEA(simdat$pvals, simdat$ids, pathlist = mocklist) head(testchart1) ## ----SEA_chunk2--------------------------------------------------------------- require(rSEA) #load rSEA testchart2<-SEA(pvals, ids, data=simdat, pathlist = mocklist, select =11:30) testchart2 ## ----setTest_chunk2----------------------------------------------------------- require(rSEA) #load rSEA lap<-union(mocklist[[8]], mocklist[[9]]) # the overlapping feature-set length(lap) setTDP(pvals, ids, data=simdat, set =lap) setTest(pvals, ids, data=simdat, set =lap , testype = "selfcontained") setTest(pvals, ids, data=simdat, set =lap , testype = "competitive", testvalue = 0.1) ## ----SEA_chunk3--------------------------------------------------------------- require(rSEA) #load rSEA testchart3<-topSEA(testchart1) #sorted by large TDP.estimates head(testchart3) testchart4<-topSEA(testchart1, by=Comp.adjP, descending=FALSE) #sorted by smallest competitive adj.p-values head(testchart3) sigchart<-topSEA(testchart1, by=Comp.adjP, thresh = 0.05) #keep only significant self-contained p-values sigchart2<-topSEA(sigchart, by=Size, descending=TRUE) #sorted by pathway size head(sigchart2) ## ----pathlist_chunk1, eval = FALSE-------------------------------------------- # # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("hgu133a.db") # # ###if you are running an older version of R # #source("http://bioconductor.org/biocLite.R") # #biocLite(c("limma","edgeR")) ## ----pathlist_chunk2, eval = FALSE-------------------------------------------- # library(hgu133a.db) # ls("package:hgu133a.db") # columns(hgu133a.db) # # gobimap<-toTable(hgu133aGO) # gobimap<-gobimap[gobimap$Ontology=="CC",] # # head(gobimap) # ## ----pathlist_chunk3, eval = FALSE-------------------------------------------- # # GOIDs<-unique(gobimap$go_id) # GOList<-lapply(GOIDs, # function(id) # gobimap$probe_id[gobimap$go_id==id]) # # names(GOList)<-GOIDs # #head(GOList) # # #make sure the Ids are unique and the paths are non-empty # GOList<-lapply(GOList, unique) # GOList <- lapply(GOList, function(path) if (all(is.na(path))) character(0) else path) # # #save(GOList, file="GOList.RData") ## ----pathlist_chunk4, eval = FALSE-------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("org.Mm.eg.db") # # library(org.Mm.eg.db) # ls("package:org.Mm.eg.db") # columns(org.Hs.eg.db) ## ----pathlist_chunk5, eval = FALSE-------------------------------------------- # # # uniKeys <- keys(org.Hs.eg.db, keytype="ENTREZID") # cols <- c("SYMBOL", "PATH") # # keggbimap<-select(org.Hs.eg.db, keys=uniKeys, # columns=cols, keytype="ENTREZID") # # head(keggbimap) # # keggIDs<-unique(keggbimap$PATH) # KEGGList<-lapply(keggIDs, # function(id) # keggbimap$ENTREZID[keggbimap$PATH==id]) # names(KEGGList)<-keggIDs # head(KEGGList) # # #make sure the Ids are unique and the paths are non-empty # KEGGList<-lapply(KEGGList, unique) # KEGGList<-lapply(KEGGList, function(path) # path[!is.na(path)]) # KEGGList <- lapply(KEGGList, # function(path) # if (all(is.na(path))) character(0) else path) # # #save(KEGGList, file="KEGGList.RData") # ## ----pathlist_chunk6, eval = FALSE-------------------------------------------- # # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("rWikiPathways") # ## ----pathlist_chunk7, eval = FALSE-------------------------------------------- # # #Matching the IDs to create list of wikipathways for metabs # library(rWikiPathways) # # homoPathways<-listPathwayIds(organism="Homo sapiens") # wikiList<-lapply(homoPathways, # function(x) # getXrefList(pathway = x, systemCode="En")) # # names(wikiList)<-homoPathways # # #make sure the Ids are unique and the paths are non-empty # wikiList<-lapply(wikiList, unique) # wikiList <- lapply(wikiList, function(path) if (all(is.na(path))) character(0) else path) # # #save(wikiList, file="wikiList.RData") #