## ----r_setup, include = FALSE----------------------------------------------------------------------------------------------------------------------- library(radiant) knitr::opts_chunk$set( comment = NA, cache = FALSE, message = FALSE, warning = FALSE, dpi = 96 ) options(width = 150) ## ----single_mean_price, fig.height = 3, fig.width = 5----------------------------------------------------------------------------------------------- library(radiant) data(diamonds, envir = environment()) result <- single_mean(diamonds, "price") summary(result) plot(result) ## ----scatter, fig.height = 4, fig.width = 5--------------------------------------------------------------------------------------------------------- visualize( diamonds, xvar = "carat", yvar = "price", type = "scatter", facet_row = "clarity", color = "clarity", labs = labs(title = "Diamond Prices ($)"), custom = FALSE ) ## ----single_mean_mpg, fig.height = 3, fig.width = 5------------------------------------------------------------------------------------------------- result <- single_mean( mtcars, var = "mpg", comp_value = 20, alternative = "greater" ) summary(result) plot(result, plots = "hist") ## ----compare_means_diamonds, fig.height = 5, fig.width = 4------------------------------------------------------------------------------------------ result <- compare_means( diamonds, var1 = "clarity", var2 = "price", adjust = "bonf" ) summary(result) plot(result, plots = c("bar", "density")) ## ----eval = FALSE----------------------------------------------------------------------------------------------------------------------------------- # ## start radiant in Rstudio, load the example data, then click the power # ## icon in the navigation bar and click on Stop # radiant::radiant() ## ----compare_means_salary, fig.height = 3, fig.width = 4-------------------------------------------------------------------------------------------- result <- compare_means(salary, var1 = "rank", var2 = "salary") summary(result) plot(result) ## --------------------------------------------------------------------------------------------------------------------------------------------------- result <- regress(diamonds, rvar = "price", evar = c("carat","clarity")) summary(result, sum_check = "confint") pred <- predict(result, pred_cmd = "carat = 1:10") print(pred, n = 10) ## ----regress_coeff, fig.width = 6, fig.height = 4--------------------------------------------------------------------------------------------------- plot(result, plots = "coef") ## ----regress_dashboard, fig.width = 5, fig.height = 7----------------------------------------------------------------------------------------------- plot(result, plots = "dashboard", lines = "line", nrobs = 100) ## ----hclus, fig.width = 4, fig.height = 5----------------------------------------------------------------------------------------------------------- ## run hierarchical cluster analysis on the shopping data, variables v1 through v6 result <- hclus(shopping, "v1:v6") ## summary - not much here - plots are more important summary(result) ## check the help file on how to plot results from hierarchical cluster ## analysis default plots ## it looks like there is a big jump in overall within-cluster ## heterogeneity in the step from 3 to 2 segments plot(result) ## ----dendro, fig.width = 4, fig.height = 5---------------------------------------------------------------------------------------------------------- ## show the dendrogram with cutoff at 0.05 plot(result, plots = "dendro", cutoff = 0.05) ## ----kclus, fig.width = 5, fig.height = 6----------------------------------------------------------------------------------------------------------- ## plots created above suggest 3 clusters may be most appropriate ## use kclus to create the clusters ## generate output and store cluster membership result <- kclus(shopping, vars = "v1:v6", nr_clus = 3) summary(result) plot(result, plots = c("density", "bar")) shopping <- store(shopping, result, name = "clus") ## was the data really changed? head(as.data.frame(shopping))