Package 'rcDEA'

October 14, 2022
Title Robust and Conditional Data Envelopment Analysis (DEA)
Version 1.0
Maintainer Anna Mergoni anna.mergoni@kuleuven.be
Description With this package we provide an easy method to compute robust and conditional Data Envelopment Analysis (DEA),
Free Disposal Hull (FDH) and Benefit of the Doubt (BOD) scores.
The robust approach is based on the work of Cazals, Florens and Simar (2002) doi:10.1016/S0304-4076(01)00080-X. The conditional approach is based on Daraio and Simar (2007) doi:10.1007/s11123-007-00493.
Besides we provide graphs to help with the choice of m.
We relay on the 'Benchmarking' package to compute the efficiency scores and on the 'np' package to compute non parametric estimation of similarity among units.
License GPL-2
Imports np, Benchmarking
Encoding UTF-8
RoxygenNote 7.1.2.9000
NeedsCompilation no
Author Anna Mergoni [aut, cre] (https://orcid.org/0000-0002-9128-5341)
Repository CRAN
Date/Publication 2021-12-14 08:20:02 UTC

R topics documented:

conditional_BOD . 2
conditional_DEA . 4
graph1_m_BOD . 6
graph1_m_DEA . 8
graph2_m_BOD . 10
graph2_m_DEA . 11
robust_BOD . 13
robust_DEA . 14

Index

```
conditional_BOD Conditional BOD function
```


Description

This function allows to compute Robust and Conditional BOD scores.

```
Usage
    conditional_BOD(
        output,
        exogenous = FALSE,
        m,
        B,
        alpha = FALSE,
        RTS = "CRS",
        ORIENTATION = "in",
        similarity = FALSE,
        inclusion = FALSE,
        print = FALSE
    )
```


Arguments

output matrix (or vector) of indicators along which the units are evaluated.
exogenous matrix (or vector) of exogenous variables involved in the conditional analysis. The similarity among the units is determined according to the exogeneous variable(s) using the function npudensbw and npudens (from the package np) with epanechnikov kernel.
m
number of unit to be included in the reference set
B
number of bootstrap replicates
alpha This allow to choose the size of the Confidence Intervals computed. By defaulta alpha $=$ FALSE. In this case no confidence interval are computed

RTS Default $=$ "CRS". For more details see the dea function in the package Benchmarking. Text string or a number defining the underlying DEA technology / returns to scale assumption. 0 fdh Free disposability hull, no convexity assumption 1 vrs Variable returns to scale, convexity and free disposability 2 drs Decreasing returns to scale, convexity, down-scaling and free disposability 3 crs Constant returns to scale, convexity and free disposability 4 irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability 5 irs2 Increasing returns to scale (up-scaling, but not down-scaling), additivity, and free disposability 6 add Additivity (scaling up and down, but only with integers), and free disposability; also known af replicability and free disposability, the free disposability and replicability hull (frh) - no convexity assumption 7 $\mathrm{fdh}+$ A combination of free disposability and restricted or local constant return to scale 10 vrs+ As vrs, but with restrictions on the individual lambdas via param

ORIENTATION	Default = "in". For more details see the dea function in the package Benchmark- ing. Input efficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). For use with DIRECT, an additional option is "in-out" (0).
similarity	matrix of similarities. In alternative to provide the exogenous variables, the matrix of similarities can be directly provided. This allow to customize the estimation of the similarities.
inclusion	If inclusion = TRUE the unit under analysis is included in the reference set. So, no super efficient scores are allowed. By default inclusion = FALSE.
print	If print = TRUE the number of the unit under evaluation is printed. In case of large sample the function could require some time, so it could be useful to control how many units have already been evaluated and which one still have to be evaluated. By default print = FALSE.

Value

If the parameter alpha is specified, the function returns a data frame with three numeric columns. The first column is the vector representing the conditional BOD scores (eff); the second column is the vector representing the lower bound of the condifence interval (ci_low); the third column is the vector representing the upper bound of the confidence interval (Ci_up). If alpha is not specified, the functions returns only the first column of the data frame (eff).

Examples

```
#Example with a very small sample to decrease computational time
    y1 <-runif(50, 50, 75)
    y2 <-runif(50, 30, 75)
    y <- cbind(y1, y2)
    z <- ifelse(rnorm(50, 0, 1)>0, 1, 0)
    #Conditional BOD
    c_BOD <- conditional_BOD(output = y, exogenous = z,
                m = 30, B = 50)
    summary(c_BOD$eff)
#Example with bigger sample
    y1 <-runif(100, 50, 75)
    y2 <-runif(100, 30, 75)
    y <- cbind(y1, y2)
    z <- ifelse(rnorm(100, 0, 1)>0, 1, 0)
    #Conditional BOD
    c_BOD <- conditional_BOD(output = y, exogenous = z,
                                    similarity = FALSE,
                                m = 30, B = 50)
    summary(c_BOD$eff)
```

```
conditional_DEA Conditional DEA function
```


Description

This function allows to compute Robust and Conditional DEA scores.

```
Usage
    conditional_DEA(
        input,
        output,
        exogenous = FALSE,
        alpha = FALSE,
        m,
        B,
        RTS = "crs",
        ORIENTATION = "in",
        similarity = FALSE,
        inclusion = FALSE,
        print = FALSE
    )
```


Arguments

input matrix (or vector) of inputs along which the units are evaluated.
output matrix (or vector) of outputs along which the units are evaluated.
exogenous matrix (or vector) of exogenous variables involved in the conditional analysis. The similarity among the units is determined according to the exogeneous variable(s) using the function npudensbw and npudens (from the package np) with epanechnikov kernel.
alpha This allow to choose the size of the Confidence Intervals computed. By defaulta alpha $=$ FALSE. In this case no confidence interval are computed
m number of unit to be included in the reference set
B number of bootstrap replicates
RTS For more details see the dea function in the package Benchmarking. Text string or a number defining the underlying DEA technology / returns to scale assumption. 0 fdh Free disposability hull, no convexity assumption 1 vrs Variable returns to scale, convexity and free disposability 2 drs Decreasing returns to scale, convexity, down-scaling and free disposability 3 crs Constant returns to scale, convexity and free disposability 4 irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability 5 irs2 Increasing returns to scale (up-scaling, but not down-scaling), additivity, and free disposability 6 add Additivity (scaling up and down, but only with integers), and free disposability; also known af replicability and free disposability, the free disposability and
replicability hull (frh) - no convexity assumption 7 fdh + A combination of free disposability and restricted or local constant return to scale 10 vrs+ As vrs, but with restrictions on the individual lambdas via param
ORIENTATION For more details see the dea function in the package Benchmarking. Input efficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). For use with DIRECT, an additional option is "in-out" (0).
similarity matrix of similarities. In alternative to provide the exogenous variables, the matrix of similarities can be directly provided. This allow to customize the estimation of the similarities.
inclusion If inclusion = TRUE the unit under analysis is included in the reference set. So, no super efficient scores are allowed. By default inclusion = FALSE.
print If print $=$ TRUE the number of the unit under evaluation is printed. In case of large sample the function could require some time, so it could be useful to control how many units have already been evaluated and which one still have to be evaluated. By default print = FALSE.

Value

If the parameter alpha is specified, the function returns a data frame with three numeric columns. The first column is the vector representing the conditional DEA scores (eff); the second column is the vector representing the lower bound of the condifence interval (ci_low); the third column is the vector representing the upper bound of the confidence interval (Ci_up). If alpha is not specified, the functions returns only the first column of the data frame (eff).

Examples

```
#Example with a very small sample to decrease computational time.
    x1 <-runif(50, 50, 75)
    x2 <-runif(50, 30, 75)
    x <- cbind(x1, x2)
    e <- rnorm(50, 0, 36)
    a1 <- 0.4
    a2 <- 0.6
    y <- a1*x1 + a2*x2 + e
    z <- ifelse(rnorm(50, 0, 1)>0, 1, 0)
    #Conditional DEA
    c_DEA <- conditional_DEA(input = x, output = y, exogenous = z,
                                    m = 30, B = 50,
                                    RTS = "crs", ORIENTATION = "in")
    summary(c_DEA$eff)
    #Example with bigger sample
    x1 <-runif(100, 50, 75)
    x2 <-runif(100, 30, 75)
    x <- cbind(x1, x2)
    a1 <- 0.4
    a2 <- 0.6
    y <- a1*x1 + a2*x2
    z <- ifelse(rnorm(100, 0, 1)>0, 1, 0)
```

```
#Conditional DEA
c_DEA <- conditional_DEA(input = x, output = y, exogenous = z,
                                    m = 30, B = 50,
                                    RTS = "crs", ORIENTATION = "in")
summary(c_DEA$eff)
```

graph1_m_BOD

Graph to select m

Description

This function allows to draw a graph that relates the number of super efficient units and the choice of m

Usage

```
    graph1_m_BOD(
        output,
        mseries,
        B,
        RTS = "crs",
        ORIENTATION = "in",
        check = c(1),
        col = c("black"),
        print = TRUE
    )
```


Arguments

output matrix (or vector) of indicators along which the units are evaluated.
mseries vector containing the different values of f that needed to be tested.
B
number of bootstrap replicates
RTS For more details see the dea function in the package Benchmarking. Text string or a number defining the underlying DEA technology / returns to scale assumption. 0 fdh Free disposability hull, no convexity assumption 1 vrs Variable returns to scale, convexity and free disposability 2 drs Decreasing returns to scale, convexity, down-scaling and free disposability 3 crs Constant returns to scale, convexity and free disposability 4 irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability 5 irs2 Increasing returns to scale (up-scaling, but not down-scaling), additivity, and free disposability 6 add Additivity (scaling up and down, but only with integers), and free disposability; also known af replicability and free disposability, the free disposability and replicability hull (frh) - no convexity assumption $7 \mathrm{fdh}+$ A combination of free disposability and restricted or local constant return to scale 10 vrs+ As vrs, but with restrictions on the individual lambdas via param

ORIENTATION	For more details see the dea function in the package Benchmarking. Input ef- ficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). For use with DIRECT, an additional option is "in-out" (0).
check	vector containing the values of the thresholds to be considered to define the superefficient units
print	vector containing the colors. the vector col must contain the same number of element of the vector check.
If print = TRUE the number of the unit under evaluation is printed. In case of large sample the function could require some time, so it could be useful to control how many units have already been evaluated and which one still have to be evaluated. By default print = FALSE.	

Value

This function return a plot, representing the percentage of super-efficient units for the different values of m. A unit is defined as super-efficient if it gets a value higher than a certain treshold (normally 1) in the robust analysis. Each line of the plot represent different values of the tresholds.

Examples

```
#Example with a very small sample to decrease computational time.
y1 <-runif(20, 50, 75)
y2 <-runif(20, 30, 75)
y <- cbind(y1, y2)
check <- c(1, 1.05, 1.5)
colors <- c("black", "red", "blue")
graph1_m_BOD(output = y, mseries = c(5, 10, 15),
            B = 50, RTS = "crs", ORIENTATION = "in",
            check = check, col = colors)
    #An example with a larger sample size.
    x1 <-runif(100, 50, 75)
    x2 <-runif(100, 30, 75)
    x <- cbind(x1, x2)
    y<- cbind(x+runif(100, -10, 0), rnorm(100, 15, 4))
graph1_m_BOD(output = y,
    mseries = c(20, 30, 40, 50, 60, 70, 80),
        B = 50,
        RTS = "crs", ORIENTATION = "in",
        check = c(1, 1.05, 1.2, 1.5),
        col = c("black", "red", "blue", "green"))
```

```
graph1_m_DEA Graph to select m
```


Description

This function allows to draw a graph that relates the number of super efficient units and the choice of m

```
Usage
    graph1_m_DEA(
        input,
        output,
        mseries,
        B,
        RTS = "crs",
        ORIENTATION = "in",
        check = c(1),
        col = c("black"),
        print = TRUE
    )
```


Arguments

input matrix (or vector) of inputs along which the units are evaluated.
output matrix (or vector) of outputs along which the units are evaluated.
mseries vector containing the different values of f that needed to be tested.
B
number of bootstrap replicates
RTS For more details see the dea function in the package Benchmarking. Text string or a number defining the underlying DEA technology / returns to scale assumption. 0 fdh Free disposability hull, no convexity assumption 1 vrs Variable returns to scale, convexity and free disposability 2 drs Decreasing returns to scale, convexity, down-scaling and free disposability 3 crs Constant returns to scale, convexity and free disposability 4 irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability 5 irs2 Increasing returns to scale (up-scaling, but not down-scaling), additivity, and free disposability 6 add Additivity (scaling up and down, but only with integers), and free disposability; also known af replicability and free disposability, the free disposability and replicability hull (frh) - no convexity assumption 7 fdh + A combination of free disposability and restricted or local constant return to scale 10 vrs+ As vrs, but with restrictions on the individual lambdas via param
ORIENTATION For more details see the dea function in the package Benchmarking. Input efficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). For use with DIRECT, an additional option is "in-out" (0).
check vector containing the values of the thresholds to be considered to define the superefficient units

$$
\begin{aligned}
& \text { col } \begin{array}{l}
\text { vector containing the colors. the vector col must contain the same number of } \\
\text { element of the vector check. } \\
\text { print } \quad \begin{array}{l}
\text { If print = TRUE the number of the unit under evaluation is printed. In case } \\
\text { of large sample the function could require some time, so it could be useful to } \\
\text { control how many units have already been evaluated and which one still have to } \\
\text { be evaluated. By default print = FALSE. }
\end{array}
\end{array} . \begin{array}{l}
\text { FA }
\end{array} \\
&
\end{aligned}
$$

Value

This function return a plot, representing the percentage of super-efficient units for the different values of m. A unit is defined as super-efficient if it gets a value higher than a certain treshold (normally 1) in the robust analysis. Each line of the plot represent different values of the tresholds.

Examples

```
#Example with a very small sample to decrease computational time.
x1 <-runif(20, 50, 75)
x2 <-runif(20, 30, 75)
x <- cbind(x1, x2)
e <- rnorm(20, 0, 36)
a1<- 0.4
a2 <- 0.6
y<- a1*x1 + a2*x2 +e
check <- c(1, 1.05, 1.5)
colors <- c("black", "red", "blue")
graph1_m_DEA(input = x, output = y, mseries = c(5, 10, 15, 20),
    B = 50, RTS = "crs", ORIENTATION = "in",
    check = check, col = colors)
```

```
#An example with a larger sample size.
x1 <-runif(100, 50, 75)
x2 <-runif(100, 30, 75)
x <- cbind(x1, x2)
y <- cbind(x+runif(100, -10, 0), rnorm(100, 15, 4))
check <- c(1, 1.05, 1.2, 1.5)
colors <- c("black", "red", "blue", "green")
graph1_m_DEA(input = x, output = y, mseries = c(20, 30, 40, 50, 60, 70, 80),
        B = 50, RTS = "crs", ORIENTATION = "in",
        check = check,
        col = colors)
```

graph2_m_BOD Graph to select m

Description

This function allows to draw a graph that relates the average efficiency score and the choice of m

Usage

graph2_m_BOD(output, mseries, B, RTS = "crs", ORIENTATION = "in", print = TRUE)

Arguments

$$
\begin{array}{ll}
\text { output } & \text { matrix (or vector) of indicators along which the units are evaluated. } \\
\text { mseries } & \text { vector containing the different values of } m \text { that needed to be tested. } \\
\text { B } & \begin{array}{l}
\text { number of bootstrap replicates }
\end{array} \\
\text { RTS } & \begin{array}{l}
\text { For more details see the dea function in the package Benchmarking. Text string } \\
\text { or a number defining the underlying DEA technology / returns to scale assump- } \\
\text { tion. } 0 \text { fdh Free disposability hull, no convexity assumption } 1 \text { vrs Variable re- } \\
\text { turns to scale, convexity and free disposability } 2 \text { drs Decreasing returns to scale, } \\
\text { convexity, down-scaling and free disposability } 3 \text { crs Constant returns to scale, } \\
\text { convexity and free disposability } 4 \text { irs Increasing returns to scale, (up-scaling, but } \\
\text { not down-scaling), convexity and free disposability } 5 \text { irs2 Increasing returns to } \\
\text { scale (up-scaling, but not down-scaling), additivity, and free disposability } 6 \text { add } \\
\text { Additivity (scaling up and down, but only with integers), and free disposabil- } \\
\text { ity; also known af replicability and free disposability, the free disposability and } \\
\text { replicability hull (frh) - no convexity assumption } 7 \text { fdh+ A combination of free } \\
\text { disposability and restricted or local constant return to scale } 10 \text { vrs+ As vrs, but } \\
\text { with restrictions on the individual lambdas via param }
\end{array} \\
\text { ORIENTATION } & \begin{array}{l}
\text { For more details see the dea function in the package Benchmarking. Input ef- } \\
\text { ficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). }
\end{array} \\
\text { print } & \begin{array}{l}
\text { For use with DIRECT, an additional option is "in-out" (0). }
\end{array} \\
\begin{array}{l}
\text { If print = TRUE the number of the unit under evaluation is printed. In case } \\
\text { of large sample the function could require some time, so it could be useful to } \\
\text { control how many units have already been evaluated and which one still have to } \\
\text { be evaluated. By default print = FALSE. }
\end{array}
\end{array}
$$

Value

This function return a plot representing the average score from the robust analysis for the different values of m chosen.

Examples

```
#Example with a very small sample to decrease computational time.
y1 <-runif(20, 50, 75)
y2 <-runif(20, 30, 75)
y <- cbind(y1, y2)
graph2_m_BOD(output = y, mseries = c(5, 10, 15), B = 50,
    RTS = "crs", ORIENTATION = "in")
```

\#An example with a larger sample size.
y1 <-runif(100, 50, 75)
y2 <-runif(100, 30, 75)
$\mathrm{y}<-\mathrm{cbind}(\mathrm{y} 1, \mathrm{y} 2)$
graph2_m_BOD(output = y,
mseries $=c(20,30,40,50,60,70,80)$,
$B=50$, RTS $=$ "crs", ORIENTATION = "in")

```
graph2_m_DEA Graph to select m
```


Description

This function allows to draw a graph that relates the average efficiency score and the choice of m

Usage

```
graph2_m_DEA(
        input,
        output,
        mseries,
        B,
        RTS = "crs",
        ORIENTATION = "in",
        print = TRUE
    )
```


Arguments

input	matrix (or vector) of inputs along which the units are evaluated.
output	matrix (or vector) of outputs along which the units are evaluated.
mseries	vector containing the different values of m that needed to be tested.
B	number of bootstrap replicates

Abstract

RTS For more details see the dea function in the package Benchmarking. Text string or a number defining the underlying DEA technology / returns to scale assumption. 0 fdh Free disposability hull, no convexity assumption 1 vrs Variable returns to scale, convexity and free disposability 2 drs Decreasing returns to scale, convexity, down-scaling and free disposability 3 crs Constant returns to scale, convexity and free disposability 4 irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability 5 irs2 Increasing returns to scale (up-scaling, but not down-scaling), additivity, and free disposability 6 add Additivity (scaling up and down, but only with integers), and free disposability; also known af replicability and free disposability, the free disposability and replicability hull (frh) - no convexity assumption 7 fdh + A combination of free disposability and restricted or local constant return to scale 10 vrs+ As vrs, but with restrictions on the individual lambdas via param ORIENTATION For more details see the dea function in the package Benchmarking. Input efficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). For use with DIRECT, an additional option is "in-out" (0). print If print $=$ TRUE, the number of the unit under evaluation is printed. In case of large sample the function could require some time, so it could be useful to control how many units have already been evaluated and which one still have to be evaluated. By default print $=$ FALSE.

Value

This function return a plot representing the average score from the robust analysis for the different values of m chosen.

Examples

```
#Example with a very small sample to decrease computational time.
x1 <-runif(20, 50, 75)
x2 <-runif(20, 30, 75)
x <- cbind(x1, x2)
e <- rnorm(20, 0, 36)
a1 <- 0.4
a2 <- 0.6
y<- a1*x1 + a2*x2 + e
graph2_m_DEA(input = x, output = y, mseries = c(5, 10, 15, 20),
    B = 50, RTS = "crs", ORIENTATION = "in")
#An example with a larger sample size.
x1 <-runif(100, 50, 75)
x2 <-runif(100, 30, 75)
x <- cbind(x1, x2)
y <- cbind(x+runif(100, -10, 0), rnorm(100, 15, 4))
graph2_m_DEA(input = x, output = y,
    mseries =c(20, 30, 40, 50, 60, 70, 80), B = 50,
    RTS = "crs", ORIENTATION = "in")
```

```
robust_BOD Robust BOD function
```


Description

This function allows to compute Robust BOD scores.

```
Usage
    robust_BOD(
        output,
        m,
        B,
        alpha = FALSE,
        RTS = "CRS",
        ORIENTATION = "in",
        inclusion = FALSE,
        print = FALSE
    )
```


Arguments

output matrix (or vector) of indicators along which the units are evaluated.
m
number of unit to be included in the reference set
B
number of bootstrap replicates
alpha

RTS Default $=$ "CRS". For more details see the dea function in the package Bench-
This allow to choose the size of the Confidence Intervals computed. By defaulta alpha $=$ FALSE. In this case no confidence interval are computed marking. Text string or a number defining the underlying DEA technology / returns to scale assumption. 0 fdh Free disposability hull, no convexity assumption 1 vrs Variable returns to scale, convexity and free disposability 2 drs Decreasing returns to scale, convexity, down-scaling and free disposability 3 crs Constant returns to scale, convexity and free disposability 4 irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability 5 irs2 Increasing returns to scale (up-scaling, but not down-scaling), additivity, and free disposability 6 add Additivity (scaling up and down, but only with integers), and free disposability; also known af replicability and free disposability, the free disposability and replicability hull (frh) - no convexity assumption 7 $\mathrm{fdh}+\mathrm{A}$ combination of free disposability and restricted or local constant return to scale 10 vrs+ As vrs, but with restrictions on the individual lambdas via param

ORIENTATION Default = "in". For more details see the dea function in the package Benchmarking. Input efficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). For use with DIRECT, an additional option is "in-out" (0).

inclusion	If inclusion = TRUE the unit under analysis is included in the reference set. So, no super efficient scores are allowed. By default inclusion = FALSE.
print	If print = TRUE the number of the unit under evaluation is printed. In case of large sample the function could require some time, so it could be useful to control how many units have already been evaluated and which one still have to be evaluated. By default print = FALSE.

Value

If the parameter alpha is specified, the function returns a data frame with three numeric columns. The first column is the vector representing the robust BOD scores (eff); the second column is the vector representing the lower bound of the condifence interval (ci_low); the third column is the vector representing the upper bound of the confidence interval (Ci_up). If alpha is not specified, the functions returns only the first column of the data frame (eff).

Examples

```
#Example with a very small sample to decrease computational time.
    y1 <-runif(50, 50, 75)
    y2 <-runif(50, 30, 75)
    y <- cbind(y1, y2)
    #Robust BOD
    r_BOD <- robust_BOD(output = y, m = 30, B = 50,
                RTS = "crs", ORIENTATION = "in", print = TRUE)
    summary(r_BOD$eff)
    ## Not run: #Example with random data x and y
    y1 <-runif(100, 50, 75)
    y2 <-runif(100, 30, 75)
    y <- cbind(y1, y2)
    #Robust BOD
    r_BOD <- robust_BOD(output = y, m = 30, B = 50,
    RTS = "crs", ORIENTATION = "in", print = TRUE)
    summary(r_BOD$eff)
## End(Not run)
```

robust_DEA

Robust Data Envelopment Analysis (DEA)

Description

This function allows to compute Robust DEA scores.

Usage

```
robust_DEA(
        input,
        output,
        m,
        B,
        RTS = "crs",
        ORIENTATION = "in",
        alpha = FALSE,
        inclusion = FALSE,
        print = FALSE
)
```


Arguments

input matrix (or vector) of inputs along which the units are evaluated.
output matrix (or vector) of outputs along which the units are evaluated.
m
number of unit to be included in the reference set
B number of bootstrap replicates
RTS For more details see the dea function in the package Benchmarking. Text string or a number defining the underlying DEA technology / returns to scale assumption. 0 fdh Free disposability hull, no convexity assumption 1 vrs Variable returns to scale, convexity and free disposability 2 drs Decreasing returns to scale, convexity, down-scaling and free disposability 3 crs Constant returns to scale, convexity and free disposability 4 irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability 5 irs2 Increasing returns to scale (up-scaling, but not down-scaling), additivity, and free disposability 6 add Additivity (scaling up and down, but only with integers), and free disposability; also known af replicability and free disposability, the free disposability and replicability hull (frh) - no convexity assumption 7 fdh + A combination of free disposability and restricted or local constant return to scale 10 vrs+ As vrs, but with restrictions on the individual lambdas via param

ORIENTATION For more details see the dea function in the package Benchmarking. Input efficiency "in" (1), output efficiency "out" (2), and graph efficiency "graph" (3). For use with DIRECT, an additional option is "in-out" (0).
alpha This allow to choose the size of the Confidence Intervals computed. By defaulta alpha $=$ FALSE. In this case no confidence interval are computed
inclusion If inclusion = TRUE the unit under analysis is included in the reference set. So, no super efficient scores are allowed. By default inclusion = FALSE.
print If print $=$ TRUE the number of the unit under evaluation is printed. In case of large sample the function could require some time, so it could be useful to control how many units have already been evaluated and which one still have to be evaluated. By default print $=$ FALSE.

Value

If the parameter alpha is specified, the function returns a data frame with three numeric columns. The first column is the vector representing the robust DEA scores (eff); the second column is the vector representing the lower bound of the condifence interval (ci_low); the third column is the vector representing the upper bound of the confidence interval (Ci_up). If alpha is not specified, the functions returns only the first column of the data frame (eff).

Examples

```
#Example with a very small sample to decrease computational time.
    x1 <-runif(50, 50, 75)
    x2 <-runif(50, 30, 75)
    x <- cbind(x1, x2)
    e <- rnorm(50, 0, 36)
    a1<- 0.4
    a2<- 0.6
    y <- a1*x1 + a2*x2 + e
    #Robust DEA
    r_DEA <- robust_DEA(input = x, output = y, m = 20, B = 50,
    RTS = "crs", ORIENTATION = "in", print = TRUE)
    summary(r_DEA$eff)
#Example with random data x and y
    x1 <-runif(100, 50, 75)
    x2 <-runif(100, 30, 75)
    x <- cbind(x1, x2)
    y <- cbind(x+runif(100, -10, 0), rnorm(100, 15, 4))
    #Robust DEA
    r_DEA <- robust_DEA(input = x, output = y, m = 30, B = 40,
    RTS = "crs", ORIENTATION = "in", print = TRUE)
    summary(r_DEA$eff)
```


Index

```
* Conditional Benefit of the Doubt
    conditional_BOD, 2
* Conditional Data Envelopment Analysis
    conditional_DEA,4
* Robust Benefit of the Doubt (BOD)
    robust_BOD,13
* Robust Data Envelopment Analysis
    robust_DEA, 14
conditional_BOD,2
conditional_DEA,4
graph1_m_BOD, 6
graph1_m_DEA, 8
graph2_m_BOD,10
graph2_m_DEA, 11
robust_BOD,13
robust_DEA, 14
```

