## ----------------------------------------------------------------------------- knitr::opts_chunk$set(message = FALSE, warning = FALSE) if(!require(regioncode)) install.packages("regioncode") library(regioncode) library(dplyr) load("../R/sysdata.rda") vec_yearRange <- names(region_data) |> grep("^\\d{4}_code$", x = _, value = TRUE) |> substr(start = 1, stop = 4) |> as.numeric() ## ----------------------------------------------------------------------------- library(regioncode) data("corruption") # Conversion to the 1989 version regioncode( data_input = corruption$prefecture_id, convert_to = "code", # default setting year_from = 2019, year_to = 1989 ) # Comparison tibble( code2019 = corruption$prefecture_id, code1989 = regioncode( data_input = corruption$prefecture_id, convert_to = "code", # default setting year_from = 2019, year_to = 1989 ), name2019 = regioncode( data_input = corruption$prefecture_id, convert_to = "name", # default setting year_from = 2019, year_to = 2019 ), name1989 = regioncode( data_input = corruption$prefecture_id, convert_to = "name", # default setting year_from = 2019, year_to = 1989 ) ) ## ----------------------------------------------------------------------------- # Original name tibble( id = corruption$prefecture_id, name = corruption$prefecture ) # Codes to name regioncode( data_input = corruption$prefecture_id, convert_to = "name", year_from = 2019, year_to = 1989 ) # Name to codes of the same year regioncode( data_input = corruption$prefecture, convert_to = "code", year_from = 2019, year_to = 2019 ) # Name to name of a different year regioncode( data_input = corruption$prefecture, convert_to = "name", year_from = 2019, year_to = 1989) ## ----------------------------------------------------------------------------- # Original full names corruption$prefecture fake_incomplete <- corruption$prefecture index_incomplete <- sample(seq(length(corruption$prefecture)), 7) fake_incomplete[index_incomplete] <- fake_incomplete[index_incomplete] |> substr(start = 1, stop = 2) fake_incomplete # Conversion to full names in 2008 regioncode( data_input = fake_incomplete, convert_to = "name", year_from = 2019, year_to = 2008, incomplete_name = TRUE ) ## ----------------------------------------------------------------------------- names_municipality <- c( "北京市", # Beijing, a municipality "海淀区", # A district of Beijing "上海市", # Shanghai, a municipality "静安区", # A district of Shanghai "济南市" ) # A prefecture of Shandong # When `zhixiashi` is FALSE, only the districts are recognized regioncode( data_input = names_municipality, year_from = 2019, year_to = 2019, convert_to = "code", zhixiashi = FALSE ) # When `zhixiashi` is TRUE, municipalities are recognized regioncode( data_input = names_municipality, year_from = 2019, year_to = 2019, convert_to = "code", zhixiashi = TRUE ) ## ----------------------------------------------------------------------------- tibble( city = corruption$prefecture, rank1989 = regioncode( data_input = corruption$prefecture, year_from = 2019, year_to = 1989, convert_to = "rank" ), rank2014 = regioncode( data_input = corruption$prefecture, year_from = 2019, year_to = 2014, convert_to = "rank" )) ## ----------------------------------------------------------------------------- tibble( city = corruption$prefecture, cityPY = regioncode( data_input = corruption$prefecture, year_from = 2019, year_to = 1989, convert_to = "name", to_pinyin = TRUE ), areaPY = regioncode( data_input = corruption$prefecture, year_from = 2019, year_to = 1989, convert_to = "area", to_pinyin = TRUE ) ) # Regions with special spelling regioncode( data_input = c("山西", "陕西", "内蒙古", "香港", "澳门"), year_from = 2019, year_to = 2008, convert_to = "name", incomplete_name = TRUE, province = TRUE, to_pinyin = TRUE ) ## ----------------------------------------------------------------------------- tibble( province = corruption$province_id, prov_name = regioncode( data_input = corruption$province_id, convert_to = "name", year_from = 2019, year_to = 1989, province = TRUE ), prov_abbre = regioncode( data_input = corruption$province_id, convert_to = "codeToabbre", year_from = 2019, year_to = 1989, province = TRUE ) ) ## ----------------------------------------------------------------------------- regioncode( data_input = corruption$prefecture, year_from = 2019, year_to = 1989, convert_to = "area") ## ----------------------------------------------------------------------------- tibble( city = corruption$prefecture, dialectGroup = regioncode( data_input = corruption$prefecture, year_from = 2019, year_to = 1989, to_dialect = "dia_group" ), dialectSubGroup = regioncode( data_input = corruption$prefecture, year_from = 2019, year_to = 1989, to_dialect = "dia_sub_group" ) )