## ----setup, collapse=TRUE----------------------------------------------------- library(rtestim) library(ggplot2) theme_set(theme_bw()) ## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( # dpi = 300, collapse = FALSE, comment = "#>", fig.asp = 0.618, fig.width = 6, out.width = "80%" ) ## ----fig.align='center'------------------------------------------------------- set.seed(12345) case_counts <- c(1, rpois(100, dnorm(1:100, 50, 15) * 500 + 1)) ggplot(data.frame(x = 1:101, case_counts), aes(x, case_counts)) + geom_point(colour = "cornflowerblue") + labs(x = "Time", y = "Case Counts") ## ----fig.align='center'------------------------------------------------------- mod <- estimate_rt(observed_counts = case_counts, nsol = 20) plot(mod) ## ----------------------------------------------------------------------------- mod_cv <- cv_estimate_rt(observed_counts = case_counts) ## ----fig.align='center'------------------------------------------------------- plot(mod_cv) ## ----fig.align='center'------------------------------------------------------- plot(mod_cv, which_lambda = "lambda.1se") ## ----------------------------------------------------------------------------- observation_incr <- rpois(101, lambda = 2) observation_incr[observation_incr == 0] <- 1 observation_time <- cumsum(observation_incr) ## ----fig.align='center'------------------------------------------------------- mod <- estimate_rt(observed_counts = case_counts, x = observation_time) plot(mod) + coord_cartesian(ylim = c(0, 5)) ## ----fig.align='center'------------------------------------------------------- mod <- estimate_rt(observed_counts = case_counts, korder = 0, nsol = 20) plot(mod) ## ----warning=FALSE, fig.align='center'---------------------------------------- can <- estimate_rt( observed_counts = cancovid$incident_cases, x = cancovid$date, korder = 2, nsol = 20, maxiter = 1e5 ) plot(can) + coord_cartesian(ylim = c(0.5, 2)) ## ----fig.align='center'------------------------------------------------------- can_cb <- confband(can, lambda = can$lambda[10], level = c(.5, .8, .95)) can_cb plot(can_cb) + coord_cartesian(ylim = c(0.5, 2))