## ----setup, include=FALSE------------------------------------------------ library(knitr) knitr::opts_chunk$set( fig.align = "center", fig.height = 5.5, fig.width = 6, warning = FALSE, collapse = TRUE, dev.args = list(pointsize = 10), out.width = "90%", par = TRUE ) knit_hooks$set(par = function(before, options, envir) { if (before && options$fig.show != "none") par(family = "sans", mar = c(4.1,4.1,1.1,1.1), mgp = c(3,1,0), tcl = -0.5) }) ## ---- message = FALSE, echo = FALSE-------------------------------------- library(samurais) ## ------------------------------------------------------------------------ data("multivtoydataset") ## ------------------------------------------------------------------------ K <- 5 # Number of regimes (states) p <- 3 # Dimension of beta (order of the polynomial regressors) variance_type <- "heteroskedastic" # "heteroskedastic" or "homoskedastic" model ## ------------------------------------------------------------------------ n_tries <- 1 max_iter <- 1500 threshold <- 1e-6 verbose <- TRUE ## ------------------------------------------------------------------------ mhmmr <- emMHMMR(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")], K, p, variance_type, n_tries, max_iter, threshold, verbose) ## ------------------------------------------------------------------------ mhmmr$summary() ## ------------------------------------------------------------------------ mhmmr$plot(what = "predicted") ## ------------------------------------------------------------------------ mhmmr$plot(what = "filtered") ## ------------------------------------------------------------------------ mhmmr$plot(what = "regressors") ## ------------------------------------------------------------------------ mhmmr$plot(what = "smoothed") ## ------------------------------------------------------------------------ mhmmr$plot(what = "loglikelihood")