## ----setup, echo = TRUE------------------------------------------------------- library(splineCox) library(joint.Cox) # Required for example data ## ----example-data------------------------------------------------------------- # Load the dataset data(dataOvarian) # Display the first few rows head(dataOvarian) ## ----fit-predefined-model----------------------------------------------------- # Define variables t.event <- dataOvarian$t.event event <- dataOvarian$event Z <- dataOvarian$CXCL12 M <- c("constant", "increase", "decrease") # Fit the model reg2 <- splineCox.reg2(t.event, event, Z, model = M, plot = TRUE) # Display the results print(reg2) ## ----fit-custom-model--------------------------------------------------------- # Define custom numeric vectors for baseline hazard shapes custom_models <- list(c(0.1, 0.2, 0.3, 0.2, 0.2), c(0.2, 0.3, 0.3, 0.1, 0.1)) # Fit the model reg2_custom <- splineCox.reg2(t.event, event, Z, model = custom_models, plot = TRUE) # Display the results print(reg2_custom) ## ----display-predefined-results----------------------------------------------- # Print a summary of the results print(reg2) ## ----display-custom-results--------------------------------------------------- # Print a summary of the results print(reg2_custom) ## ----copula-density-plot, message=FALSE, warning=FALSE------------------------ library(ggplot2) N <- 50 u <- v <- seq(from = 0, to = 1, length.out = N) U <- rep(u, N) V <- rep(v, each = N) # Positive Exchangeable c.data <- data.frame( U = U, V = V, C = spline.copula(U, V, R = "PE1", density = TRUE, mat = FALSE) ) ggplot(aes(x=U, y=V), data=c.data) + geom_contour(aes(x=U,y=V,z=C,colour=after_stat(level)), data=c.data,bins=25)+xlab("u")+ylab("v") # Negative Exchangeable c.data <- data.frame( U = U, V = V, C = spline.copula(U, V, R = "NE3", density = TRUE, mat = FALSE) ) ggplot(aes(x=U, y=V), data=c.data) + geom_contour(aes(x=U,y=V,z=C,colour=after_stat(level)), data=c.data,bins=25)+xlab("u")+ylab("v")