Package 'starvars’

October 14, 2022

Type Package

Title Vector Logistic Smooth Transition Models Estimation and Prediction

Version 1.1.10
Description Allows the user to estimate a vector logistic smooth transition autoregressive model via maximum log-likelihood or nonlinear least squares. It further permits to test for linearity in the multivariate framework against a vector logistic smooth transition autoregressive model with a single transition variable. The estimation method is discussed in Terasvirta and Yang (2014, doi:10.1108/S0731-9053(2013)0000031008). Also, realized covariances can be constructed from stock market prices or returns, as explained in Andersen et al. (2001, doi:10.1016/S0304-405X(01)00055-1).

License GPL
Encoding UTF-8
LazyData true
Depends R (>=4.0)
Imports MASS, ks, zoo, doSNOW, foreach, methods, matrixcalc, optimParallel, parallel, vars, xts, lessR, quantmod

URL https://github.com/andbucci/starvars
RoxygenNote 7.1.1
NeedsCompilation no
Author Andrea Bucci [aut, cre, cph],
Giulio Palomba [aut],
Eduardo Rossi [aut],
Andrea Faragalli [ctb]
Maintainer Andrea Bucci andrea.bucci@unich.it
Repository CRAN
Date/Publication 2022-01-17 21:40:02 UTC

R topics documented:

coef.VLSTAR 2
logLik.VLSTAR 3
lrvarbart 4
multiCUMSUM 4
plot.VLSTAR 5
plot.vlstarpred 8
predict.VLSTAR 10
print.VLSTAR 11
rcov 12
Realized 13
Sample5minutes 14
startingVLSTAR 14
summary.VLSTAR 16
techprices 17
VLSTAR 17
VLSTARjoint 20
Index 22
coef.VLSTAR Coefficient method for objects of class VLSTAR

Description

Returns the coefficients of a VLSTAR model for objects generated by VLSTAR()

Usage

\#\# S3 method for class 'VLSTAR'
coef(object, ...)

Arguments

object An object of class 'VLSTAR'; generated by VLSTAR(). Currently not used.

Value

Estimated coefficients of the VLSTAR model

Author(s)

Andrea Bucci

References

Terasvirta T. and Yang Y. (2014), Specification, Estimation and Evaluation of Vector Smooth Transition Autoregressive Models with Applications. CREATES Research Paper 2014-8

Examples

mean(1:3)
logLik.VLSTAR Log-Likelihood method

Description

Returns the log-Likelihood of a VLSTAR object.

Usage

\#\# S3 method for class 'VLSTAR'
logLik(object, type = c('Univariate', 'Multivariate'), ...)

Arguments

object An object of class 'VLSTAR' obtained through VLSTAR().
type Type of Log-Likelihood to be showed (univariate or multivariate).
... further arguments to be passed to and from other methods

Details

The log-likelihood of a VLSTAR model is defined as:

$$
\log l\left(y_{t} \mid I_{t} ; \theta\right)=-\frac{T \tilde{n}}{2} \ln (2 \pi)-\frac{T}{2} \ln |\Omega|-\frac{1}{2} \sum_{t=1}^{T}\left(y_{t}-\tilde{G}_{t} B z_{t}\right)^{\prime} \Omega^{-1}\left(y_{t}-\tilde{G}_{t} B z_{t}\right)
$$

Value

An object with class attribute logLik.

Author(s)

Andrea Bucci

See Also

VLSTAR

Description

Function returns the long-run variance of a time series, relying on the Bartlett kernel. The window size of the kernel is the cube root of the sample size.

Usage

lrvarbart(x)

Arguments

x
a ($T \times 1$) vector containing the time series over period T

Value

lrv	long-run variance
return	bandwidth size of the window

Author(s)

Andrea Bucci

References

Hamilton J. D. (1994), Time Series Analysis. Princeton University Press; Tsay R.S. (2005), Analysis of Financial Time Series. John Wiley \& SONS

Examples

data(Realized)
lrvarbart(Realized[,1])

```
multiCUMSUM
```


Description

Function returns the test statistics for the presence of co-breaks in a set of multivariate time series.

Usage

multiCUMSUM(data, conf.level $=0.95$, max. breaks $=7$)

Arguments

data a (T $\times N$) matrix or data.frame containing the N time series over period T
conf.level Confidence level. By default set to 0.95
max.breaks Integer, determines the highest number of common breaks from 1 to 7 .

Value

Lambda Test statistics
a matrix of test statistics on the presence of a number of co-break equal to max.breaks in the conditional mean
Omega Test statistics
a matrix of test statistics on the presence of a number of co-break equal to max.breaks in the conditional variance
Break location the index and the Date where the common breaks are located

Author(s)

Andrea Bucci and Giulio Palomba

References

Aue A., Hormann S., Horvath L.and Reimherr M. (2009), Break detection in the covariance structure of multivariate time series models. The Annals of Statistics. 37: 4046-4087 Bai J., Lumsdaine R. L. and Stock J. H. (1998), Testing For and Dating Common Breaks in Multivariate Time Series. Review of Economic Studies. 65: 395-432 Barassi M., Horvath L. and Yuqian Z. (2018), ChangePoint Detection in the Conditional Correlation Structure of Multivariate Volatility Models. Journal of Business $\backslash \&$ Economic Statistics

Examples

```
data(Realized)
testCS <- multiCUMSUM(Realized[,1:10], conf.level = 0.95)
print(testCS)
```

plot.VLSTAR

Plot methods for a VLSTAR object

Description

Plot method for objects with class attribute VLSTAR.

Usage

```
## S3 method for class 'VLSTAR'
plot(
        x,
        names = NULL,
        main.fit = NULL,
        main.acf = NULL,
        main.pacf = NULL,
        main.logi = NULL,
        ylim.fit = NULL,
        ylim.resid = NULL,
        lty.fit = NULL,
        lty.resid = NULL,
        lty.logi = NULL,
        lwd.fit = NULL,
        lwd.resid = NULL,
        lwd.logi = NULL,
        lag.acf = NULL,
        lag.pacf = NULL,
        col.fit = NULL,
        col.resid = NULL,
        col.logi = NULL,
        ylab.fit = NULL,
        ylab.resid = NULL,
        ylab.acf = NULL,
        ylab.pacf = NULL,
        ylab.logi = NULL,
        xlab.fit = NULL,
        xlab.resid = NULL,
        xlab.logi = NULL,
        mar = par("mar"),
        oma = par("oma"),
        adj.mtext = NA,
        padj.mtext = NA,
        col.mtext = NA,
    ..
)
```


Arguments

x
names
main.fit Character vector, main for diagram of fit.
main.acf Character vector, main for residuals’ ACF.
main.pacf Character vector, main for residuals' PACF.
main.logi
An object of class 'VLSTAR'. plotted.
min.logi
Character vector, main for the plot of the logistic function.

Character vector, the variables names to be plotted. If left NULL, all variables are

ylim.fit	Vector, ylim for diagram of fit.
ylim.resid	Vector, ylim for residual plot.
lty.fit	Vector, lty for diagram of fit.
lty.resid	Vector, lty for residual plot.
lty.logi	Vector, lty for the plot of the logistic function.
lwd.fit	Vector, lwd for diagram of fit.
lwd.resid	Vector, lwd for residual plot.
lwd.logi	Vector, lwd for the plot of the logistic function.
lag.acf	Integer, lag.max for ACF of residuals.
lag.pacf	Integer, lag.max for PACF of residuals.
col.fit	Character vector, colors for diagram of fit.
col.resid	Character vector, colors for residual plot.
col.logi	Character vector, colors for logistic function plot.
ylab.fit	Character vector, ylab for diagram of fit.
ylab.resid	Character vector, ylab for residual plot.
ylab.acf	Character, ylab for ACF.
ylab.pacf	Character, ylab for PACF
ylab.logi	Character vector, ylab for the plot of the logistic function.
xlab.fit	Character vector, xlab for diagram of fit.
xlab.resid	Character vector, xlab for residual plot.
$x \mathrm{lab} . \operatorname{logi}$	Character vector, xlab for the plot of the logistic function.
mar	Setting of margins.
oma	Setting of outer margins.
adj.mtext	Adjustment for mtext ().
padj.mtext	Adjustment for mtext ().
col.mtext	Character, color for mtext (), only applicable.
	Passed to internal plot function.
main	Character vector, the titles of the plot.
xlab	Character vector signifying the labels for the x -axis.
ylab	Character vector signifying the labels for the y-axis.
ylim	Vector, the limits of the y-axis.

Details

When the plot function is applied to a VLSTAR object, the values of the logistic function, given the estimated values of gamma and c through VLSTAR, are reported.

Value

Plot of VLSTAR fitted values, residuals, ACF, PACF and logistic function

Author(s)

Andrea Bucci

See Also

VLSTAR
plot.vlstarpred Plot methods for a vlstarpred object

Description

Plot method for objects with class attribute vlstarpred.

Usage

```
## S3 method for class 'vlstarpred'
plot(
        x,
        type = c("single", "multiple"),
        names = NULL,
        main = NULL,
        xlab = NULL,
        ylab = NULL,
        lty.obs = 2,
        lty.pred = 1,
        lty.ci = 3,
        lty.vline = 1,
        lwd.obs = 1,
        lwd.pred = 1,
        lwd.ci = 1,
        lwd.vline = 1,
        col.obs = NULL,
        col.pred = NULL,
        col.ci = NULL,
        col.vline = NULL,
        ylim = NULL,
        mar = par("mar"),
        oma = par("oma"),
        )
```


Arguments

x
type

An object of class 'vlstarpred'.
Character, if multiple all plots are drawn in a single device, otherwise the plots are shown consecutively.

names	Character vector, the variables names to be plotted. If left NULL, all variables are plotted.
main	Character vector, the titles of the plot.
xlab	Character vector signifying the labels for the x-axis.
ylab	Character vector signifying the labels for the y-axis.
lty. obs	Vector, lty for the plot of the observed values.
lty.pred	Vector, lty for the plot of the predicted values.
lty.ci	Vector, lty for the interval forecast.
lty.vline	Vector, lty for the vertical line.
lwd.obs	Vector, lwd for the plot of the observed values.
lwd.pred	Vector, lwd for the plot of the predicted values.
lwd.ci	Vector, lwd for the interval forecast.
lwd.vline	Vector, lwd for the vertical line.
col.obs	Character vector, colors for the observed values.
col.pred	Character vector, colors for the predicted values.
col.ci	Character vector, colors for the interval forecast.
col.vline	Character vector, colors for the vertical line.
ylim	Vector, the limits of the y-axis.
mar	Setting of margins.
oma	Setting of outer margins.
\ldots	Passed to internal plot function.

Value

Plot of predictions from VLSTAR with their prediction interval

Author(s)

Andrea Bucci

See Also

predict.VLSTAR
predict.VLSTAR VLSTAR Prediction

Description

One-step or multi-step ahead forecasts, with interval forecast, of a VLSTAR object.

Usage

```
    ## S3 method for class 'VLSTAR'
    predict(
        object,
    ...,
    n.ahead = 1,
    conf.lev = 0.95,
    st.new = NULL,
    M = 5000,
    B = 1000,
    st.num = NULL,
    newdata = NULL,
    method = c("naive", "Monte Carlo", "bootstrap")
    )
```


Arguments

object An object of class 'VLSTAR' obtained through VLSTAR()
... further arguments to be passed to and from other methods
n . ahead An integer specifying the number of ahead predictions
conf.lev Confidence level of the interval forecast
st.new Vector of new data for the transition variable
M An integer with the number of errors sampled for the Monte Carlo method
B
st.num An integer with the index of dependent variable if st.new is NULL and the transition variable is a lag of one of the dependent variables
newdata data.frame or matrix of new data for the exogenous variables
method A character identifying which multi-step ahead method should be used among naive, Monte Carlo and bootstrap

Value

A list containing:
forecasts data.frame of predictions for each dependent variable and the (1- α) prediction intervals
$y \quad a$ matrix of values for y

Author(s)

Andrea Bucci and Eduardo Rossi

References

Granger C.W.J. and Terasvirta T. (1993), Modelling Non-Linear Economic Relationships. Oxford University Press;
Lundbergh S. and Terasvirta T. (2007), Forecasting with Smooth Transition Autoregressive Models. John Wiley and Sons;
Terasvirta T. and Yang Y. (2014), Specification, Estimation and Evaluation of Vector Smooth Transition Autoregressive Models with Applications. CREATES Research Paper 2014-8

See Also
VLSTAR for log-likehood and nonlinear least squares estimation of the VLSTAR model.
print.VLSTAR Print method for objects of class VLSTAR

Description

'print' methods for class 'VLSTAR'.

Usage

\#\# S3 method for class 'VLSTAR'
print(x, ...)

Arguments

x
An object of class 'VLSTAR' obtained through VLSTAR().
... further arguments to be passed to and from other methods

Value

Print of VLSTAR results

Author(s)

Andrea Bucci

References

Terasvirta T. and Yang Y. (2014), Specification, Estimation and Evaluation of Vector Smooth Transition Autoregressive Models with Applications. CREATES Research Paper 2014-8

See Also

VLSTAR

```
rcov
```


Realized Covariance

Description

Function returns the vectorization of the lowest triangular of the Realized Covariance matrices for different frequencies.

Usage

```
rcov(
    data,
    freq = c("daily", "monthly", "quarterly", "yearly"),
    make.ret = TRUE,
    cholesky = FALSE
    )
```


Arguments

data $\quad a(T \times N) \times t s$ object containing the N price/return series over period T
freq a string defining the desired frequency for the Realized Covariance matrices between "daily", "monthly", "quarterly" or "yearly"
make.ret boolean, in case it is TRUE the data are converted in returns, FALSE otherwise
cholesky boolean, in case it is TRUE the Cholesky factors of the Realized Covariance matrices are calculated, FALSE by default

Value

Realized Covariances
a $M \times N(N+1) / 2$ matrix of realized covariances, where M is the number of lower frequency data
Cholesky Factors (optional)
a $M \times N(N+1) / 2$ matrix of Cholesky factors of the realized covariance matrices, where M is the number of lower frequency data
returns (optional)
a $T \times N$ matrix of returns, when make. ret $=$ TRUE

Author(s)

Andrea Bucci

References

Andersen T.G., Bollerslev T., Diebold F.X. and Labys P. (2003), Modeling and Forecasting Realized Volatility. Econometrica. 71: 579-625

Barndorff-Nielsen O.E. and Shephard N. (2002), Econometric analysis of realised volatility and its use in estimating stochastic volatility models Journal of the Royal Statistical Society. 64(2): 253-280

Examples

```
data(Sample5minutes)
rc <- rcov(Sample5minutes, freq = 'daily', cholesky = TRUE, make.ret = TRUE)
print(rc)
```

Realized Monthly time series used to test VLSTAR models.

Description

This data set contains the series of realized covariances in 4 stock market indices, i.e. SP-500, Nikkei, DAX, and FTSE, Dividend Yield and Earning Price growth rate, inflation growth rates for U.S., U.K., Japan and Germany, from August 1990 to June 2018.

Usage

data(Realized)

Format

A zoo data frame with 334 monthly observations, ranging from 1990:M8 until 2018:M6.

$$
\begin{aligned}
\text { SP } & \text { Monthly realized variances of S\&P } 500 \text { index. } \\
\text { SP-NIKKEI } & \text { Monthly realized covariances between S\&P } 500 \text { and Nikkei. } \\
\text { SP-FTSE } & \text { Monthly realized covariances between S\&P 500 and FTSE. } \\
\text { SP-DAX } & \text { Monthly realized covariances between S\&P 500 and DAX. } \\
\text { NIKKEI } & \text { Monthly realized variances of Nikkei index. } \\
\text { NIKKEI-FTSE } & \text { Monthly realized covariances between Nikkei and FTSE. } \\
\text { NIKKEI-DAX } & \text { Monthly realized covariances between Nikkei and DAX. } \\
\text { FTSE } & \text { Monthly realized variances of FTSE index. } \\
\text { FTSE-DAX } & \text { Monthly realized covariances between FTSE and DAX. } \\
\text { DAX } & \text { Monthly realized variances of DAX index. } \\
\text { DP } & \text { Monthly Dividends growth rate over the past year relative to current market prices; S\&P 500 index. } \\
\text { EP } & \text { Monthly Earnings growth rate over the past year relative to current market prices; S\&P500 index. } \\
\text { Inf_US } & \text { US monthly Industrial Production growth. } \\
\text { Inf_UK } & \text { UK monthly Industrial Production growth. } \\
\text { Inf_JPN } & \text { Japan monthly Industrial Production growth. } \\
\text { Inf_GER } & \text { Germany monthly Industrial Production growth. }
\end{aligned}
$$

Author(s)

Andrea Bucci

See Also

rcov to build realized covariances from stock prices or returns.

Sample5minutes Ten simulated prices series for 19 trading days in January 2010.

Description

Ten hypothetical price series were simulated according to the factor diffusion process discussed in Barndorff-Nielsen et al.

```
Usage
data("Sample5minutes")
```


Format

xts object

Author(s)

Andrea Bucci
startingVLSTAR Starting parameters for a VLSTAR model

Description

This function allows the user to obtain the set of starting values of Gamma and C for the convergence algorithm via searching grid.

Usage

```
startingVLSTAR(
    y,
    exo = NULL,
    p = 1,
    m = 2,
    st = NULL,
    constant = TRUE,
    n.combi = NULL,
    ncores = 2,
    singlecgamma = FALSE
)
```


Arguments

$y \quad$ data. frame or matrix of dependent variables of dimension (Txn)
exo (optional) data.frame or matrix of exogenous variables of dimension (Txk)
p lag order
m number of regimes
st single transition variable for all the equation of dimension (Tx1)
constant TRUE or FALSE to include or not the constant
n. combi Number of combination for the searching grid of Gamma and C
ncores Number of cores used for parallel computation. Set to 2 by default
singlecgamma TRUE or FALSE to use single gamma and c

Details

The searching grid algorithm allows for the optimal choice of the parameters γ and c by minimizing the sum of the Squared residuals for each possible combination.
The parameter c is initialized by using the mean of the dependent(s) variable, while γ is sampled between 0 and 100 .

Value

An object of class startingVLSTAR.

Author(s)

Andrea Bucci

References

Anderson H.M. and Vahid F. (1998), Testing multiple equation systems for common nonlinear components. Journal of Econometrics. 84: 1-36

Bacon D.W. and Watts D.G. (1971), Estimating the transition between two intersecting straight lines. Biometrika. 58: 525-534

Terasvirta T. and Yang Y. (2014), Specification, Estimation and Evaluation of Vector Smooth Transition Autoregressive Models with Applications. CREATES Research Paper 2014-8

See Also

VLSTAR

Examples

```
data(Realized)
y <- Realized[-1,1:10]
y <- y[-nrow(y),]
st <- Realized[-nrow(Realized),1]
```

```
st <- st[-length(st)]
starting <- startingVLSTAR(y, p = 1, n.combi = 3,
    singlecgamma = FALSE, st = st,
    ncores = 1)
```

summary.VLSTAR Summary method for objects of class VLSTAR

Description

'summary' methods for class 'VLSTAR'.

Usage

\#\# S3 method for class 'VLSTAR'
summary (object, ...)
\#\# S3 method for class 'summary.VLSTAR'
print(x, ...)

Arguments

object An object of class 'VLSTAR' obtained through VLSTAR().
... further arguments to be passed to and from other methods
$x \quad$ A summary object of class 'VLSTAR' obtained through summary ().

Value

An object of class summary. VLSTAR containing a list of summary information from VLSTAR estimates. When print is applied to this object, summary information are printed

Functions

- print. summary.VLSTAR: Print of the summary

Author(s)

Andrea Bucci

References

Terasvirta T. and Yang Y. (2014), Specification, Estimation and Evaluation of Vector Smooth Transition Autoregressive Models with Applications. CREATES Research Paper 2014-8

See Also

VLSTAR
techprices Daily closing prices of 3 tech stocks.

Description

This data set contains the series of daily prices of Google, Microsof and Amazon stocks from January 3, 2005 to June 16, 2020, gathered from Yahoo.

Usage

```
data("techprices")
```


Format

An xts object with 3890 daily observations, ranging from from January 3, 2005 to June 16, 2020.
Google daily closing prices of Google (GOOG) stock.
Microsoft daily closing prices of Microsoft (MSFT) stock.
Amazon daily closing stock prices of Amazon (AMZN) stock.

Author(s)

Andrea Bucci
VLSTAR VLSTAR-Estimation

Description

This function allows the user to estimate the coefficients of a VLSTAR model with m regimes through maximum likelihood or nonlinear least squares. The set of starting values of Gamma and C for the convergence algorithm can be either passed or obtained via searching grid.

Usage

```
VLSTAR (
    \(y\),
    exo \(=\) NULL,
    p = 1,
    \(\mathrm{m}=2\),
    st = NULL,
    constant = TRUE,
    starting = NULL,
    method = c("ML", "NLS"),
    n.iter \(=500\),
```

```
    singlecgamma = FALSE,
    epsilon = 10^(-3),
    ncores = NULL
)
```


Arguments

y
exo
p
$\mathrm{m} \quad$ number of regimes
st single transition variable for all the equation of dimension (Tx1)
constant TRUE or FALSE to include or not the constant
starting set of intial values for Gamma and C, inserted as a list of length $m-1$. Each element of the list should contain a data. frame with 2 columns (one for Gamma and one for c), and n rows.
method Fitting method: maximum likelihood or nonlinear least squares.
n.iter number of iteration of the algorithm until forced convergence
singlecgamma TRUE or FALSE to use single gamma and c
epsilon convergence check measure
ncores Number of cores used for parallel computation. Set to NULL by default and automatically calculated.

Details

The multivariate smooth transition model is an extension of the smooth transition regression model introduced by Bacon and Watts (1971) (see also Anderson and Vahid, 1998). The general model is

$$
y_{t}=\mu_{0}+\sum_{j=1}^{p} \Phi_{0, j} y_{t-j}+A_{0} x_{t} \cdot G_{t}\left(s_{t} ; \gamma, c\right)\left[\mu_{1}+\sum_{j=1}^{p} \Phi_{1, j} y_{t-j}+A_{1} x_{t}\right]+\varepsilon_{t}
$$

where μ_{0} and μ_{1} are the $\tilde{n} \times 1$ vectors of intercepts, $\Phi_{0, j}$ and $\Phi_{1, j}$ are square $\tilde{n} \times \tilde{n}$ matrices of parameters for lags $j=1,2, \ldots, p, \mathrm{~A} _0$ and A_1 are $\tilde{n} \times k$ matrices of parameters, $\mathrm{x} _\mathrm{t}$ is the $k \times 1$ vector of exogenous variables and ε_{t} is the innovation. Finally, $G_{t}\left(s_{t} ; \gamma, c\right)$ is a $\tilde{n} \times \tilde{n}$ diagonal matrix of transition function at time t, such that

$$
G_{t}\left(s_{t} ; \gamma, c\right)=\left\{G_{1, t}\left(s_{1, t} ; \gamma_{1}, c_{1}\right), G_{2, t}\left(s_{2, t} ; \gamma_{2}, c_{2}\right), \ldots, G_{\tilde{n}, t}\left(s_{\tilde{n}, t} ; \gamma_{\tilde{n}}, c_{\tilde{n}}\right)\right\}
$$

Each diagonal element $G_{i, t}^{r}$ is specified as a logistic cumulative density functions, i.e.

$$
G_{i, t}^{r}\left(s_{i, t}^{r} ; \gamma_{i}^{r}, c_{i}^{r}\right)=\left[1+\exp \left\{-\gamma_{i}^{r}\left(s_{i, t}^{r}-c_{i}^{r}\right)\right\}\right]^{-1}
$$

for latex and $r=0,1, \ldots, m-1$, so that the first model is a Vector Logistic Smooth Transition AutoRegressive (VLSTAR) model. The ML estimator of θ is obtained by solving the optimization problem

$$
\hat{\theta}_{M L}=\arg \max _{\theta} \log L(\theta)
$$

where $\log L(\theta)$ is the log-likelihood function of VLSTAR model, given by

$$
l l\left(y_{t} \mid I_{t} ; \theta\right)=-\frac{T \tilde{n}}{2} \ln (2 \pi)-\frac{T}{2} \ln |\Omega|-\frac{1}{2} \sum_{t=1}^{T}\left(y_{t}-\tilde{G}_{t} B z_{t}\right)^{\prime} \Omega^{-1}\left(y_{t}-\tilde{G}_{t} B z_{t}\right)
$$

The NLS estimators of the VLSTAR model are obtained by solving the optimization problem

$$
\hat{\theta}_{N L S}=\arg \min _{\theta} \sum_{t=1}^{T}\left(y_{t}-\Psi_{t}^{\prime} B^{\prime} x_{t}\right)^{\prime}\left(y_{t}-\Psi_{t}^{\prime} B^{\prime} x_{t}\right)
$$

Generally, the optimization algorithm may converge to some local minimum. For this reason, providing valid starting values of θ is crucial. If there is no clear indication on the initial set of parameters, θ, this can be done by implementing a grid search. Thus, a discrete grid in the parameter space of Γ and C is create to obtain the estimates of B conditionally on each point in the grid. The initial pair of Γ and C producing the smallest sum of squared residuals is chosen as initial values, then the model is linear in parameters. The algorithm is the following:

1. Construction of the grid for Γ and C , computing Ψ for each poin in the grid
2. Estimation of \hat{B} in each equation, calculating the residual sum of squares, Q_{t}
3. Finding the pair of Γ and C providing the smallest Q_{t}
4. Once obtained the starting-values, estimation of parameters, B, via nonlinear least squares (NLS)
5. Estimation of Γ and C given the parameters found in step 4
6. Repeat step 4 and 5 until convergence.

Value

An object of class VLSTAR, with standard methods.

Author(s)

Andrea Bucci

References

Anderson H.M. and Vahid F. (1998), Testing multiple equation systems for common nonlinear components. Journal of Econometrics. 84: 1-36
Bacon D.W. and Watts D.G. (1971), Estimating the transition between two intersecting straight lines. Biometrika. 58: 525-534
Terasvirta T. and Yang Y. (2014), Specification, Estimation and Evaluation of Vector Smooth Transition Autoregressive Models with Applications. CREATES Research Paper 2014-8

Examples

```
data(Realized)
y <- Realized[-1,1:10]
y <- y[-nrow(y),]
```

```
st <- Realized[-nrow(Realized),1]
st <- st[-length(st)]
stvalues <- startingVLSTAR(y, p = 1, n.combi = 3,
    singlecgamma = FALSE, st = st, ncores = 1)
fit.VLSTAR <- VLSTAR(y, p = 1, singlecgamma = FALSE, starting = stvalues,
    n.iter = 1, st = st, method ='NLS', ncores = 1)
# a few methods for VLSTAR
print(fit.VLSTAR)
summary(fit.VLSTAR)
plot(fit.VLSTAR)
predict(fit.VLSTAR, st.num = 1, n.ahead = 1)
logLik(fit.VLSTAR, type = 'Univariate')
coef(fit.VLSTAR)
```

VLSTARjoint Joint linearity test

Description

This function allows the user to test linearity against a Vector Smooth Transition Autoregressive Model with a single transition variable.

Usage

VLSTARjoint (y, exo $=$ NULL, st, st.choice $=$ FALSE, alpha $=0.05$)

Arguments

y	data.frame or matrix of dependent variables of dimension (Txn)
exo	(optional) data.frame or matrix of exogenous variables of dimension (Txk)
st	single transition variable for all the equation of dimension (Tx1) st. choice
boolean identifying whether the transition variable should be selected from a	
matrix of R potential variables of dimension (TxR)	

Details

Given a VLSTAR model with a unique transition variable, $s_{1 t}=s_{2 t}=\ldots=s_{\widetilde{n} t}=s_{t}$, a generalization of the linearity test presented in Luukkonen, Saikkonen and Terasvirta (1988) may be implemented.
Assuming a 2-state VLSTAR model, such that

$$
y_{t}=B_{1} z_{t}+G_{t} B_{2} z_{t}+\varepsilon_{t} .
$$

Where the null $H_{0}: \gamma_{j}=0, j=1, \ldots, \widetilde{n}$, is such that $G_{t} \equiv(1 / 2) / \widetilde{n}$ and the previous Equation is linear. When the null cannot be rejected, an identification problem of the parameter c_{j} in the
transition function emerges, that can be solved through a first-order Taylor expansion around $\gamma_{j}=$ 0.

The approximation of the logistic function with a first-order Taylor expansion is given by

$$
\begin{aligned}
G\left(s_{t} ; \gamma_{j}, c_{j}\right)= & (1 / 2)+(1 / 4) \gamma_{j}\left(s_{t}-c_{j}\right)+r_{j t} \\
& =a_{j} s_{t}+b_{j}+r_{j t}
\end{aligned}
$$

where $a_{j}=\gamma_{j} / 4, b_{j}=1 / 2-a_{j} c_{j}$ and r_{j} is the error of the approximation. If G_{t} is specified as follows

$$
\begin{aligned}
G_{t}=\operatorname{diag}\left\{a_{1} s_{t}\right. & \left.+b_{1}+r_{1 t}, \ldots, a_{\widetilde{n}} s_{t}+b_{\widetilde{n}}+r_{\widetilde{n} t}\right\} \\
& =A s_{t}+B+R_{t}
\end{aligned}
$$

where $A=\operatorname{diag}\left(a_{1}, \ldots, a_{\tilde{n}}\right), B=\operatorname{diag}\left(b_{1}, \ldots, b_{\tilde{n}}\right)$ e $R_{t}=\operatorname{diag}\left(r_{1 t}, \ldots, r_{\tilde{n}}\right), y_{t}$ can be written as

$$
\begin{gathered}
y_{t}=B_{1} z_{t}+\left(A s_{t}+B+R_{t}\right) B_{2} z_{t}+\varepsilon_{t} \\
=\left(B_{1}+B B_{2}\right) z_{t}+A B_{2} z_{t} s_{t}+R_{t} B_{2} z_{t}+\varepsilon_{t} \\
=\Theta_{0} z_{t}+\Theta_{1} z_{t} s_{t}+\varepsilon_{t}^{*}
\end{gathered}
$$

where $\Theta_{0}=B_{1}+B_{2}^{\prime} B, \Theta_{1}=B_{2}^{\prime} A$ and $\varepsilon_{t}^{*}=R_{t} B_{2}+\varepsilon_{t}$. Under the null, $\Theta_{0}=B_{1}$ and $\Theta_{1}=0$, while the previous model is linear, with $\varepsilon_{t}^{*}=\varepsilon_{t}$. It follows that the Lagrange multiplier test, under the null, is derived from the score

$$
\frac{\partial \log L(\widetilde{\theta})}{\partial \Theta_{1}}=\sum_{t=1}^{T} z_{t} s_{t}\left(y_{t}-\widetilde{B}_{1} z_{t}\right)^{\prime} \widetilde{\Omega}^{-1}=S\left(Y-Z \widetilde{B}_{1}\right) \widetilde{\Omega}^{-1}
$$

where

$$
S=z_{1}^{\prime} s_{1} \vdots z_{t}^{\prime} s_{t}
$$

and where \widetilde{B}_{1} and $\widetilde{\Omega}$ are estimated from the model in H_{0}. If $P_{Z}=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}$ is the projection matrix of Z , the LM test is specified as follows

$$
L M=\operatorname{tr}\left\{\widetilde{\Omega}^{-1}\left(Y-Z \widetilde{B}_{1}\right)^{\prime} S\left[S^{\prime}\left(I_{t}-P_{Z}\right) S\right]^{-1} S^{\prime}\left(Y-Z \widetilde{B}_{1}\right)\right\}
$$

Under the null, the test statistics is distributed as a χ^{2} with $\widetilde{n}(p \cdot \widetilde{n}+k)$ degrees of freedom.

Value

An object of class VLSTARjoint.

Author(s)

Andrea Bucci

References

Luukkonen R., Saikkonen P. and Terasvirta T. (1988), Testing Linearity Against Smooth Transition Autoregressive Models. Biometrika, 75: 491-499
Terasvirta T. and Yang Y. (2015), Linearity and Misspecification Tests for Vector Smooth Transition Regression Models. CREATES Research Paper 2014-4

Index

```
* RCOV
    rcov, 12
* VLSTAR
    coef.VLSTAR,2
    lrvarbart,4
    multiCUMSUM,4
    plot.VLSTAR,5
    predict.VLSTAR,10
    print.VLSTAR, 11
    startingVLSTAR,14
    summary.VLSTAR, 16
    VLSTAR,17
    VLSTARjoint, 20
* datasets
    Realized, 13
    Sample5minutes,14
    techprices,17
coef (coef.VLSTAR), 2
coef.VLSTAR, 2
coefficients (coef.VLSTAR), 2
logLik (logLik.VLSTAR), 3
logLik.VLSTAR, 3
lrvarbart,4
multiCUMSUM, 4
plot.VLSTAR,5
plot.vlstarpred,8
predict (predict.VLSTAR), 10
predict.VLSTAR, 9,10
print (print.VLSTAR), 11
print.multiCUMSUM(multiCUMSUM),4
print.summary (summary.VLSTAR), 16
print.VLSTAR, 11
print.VLSTARjoint (VLSTARjoint), 20
print.vlstarpred (predict.VLSTAR), 10
rcov, 12, 14
Realized,13
```

Sample5minutes, 14
startingVLSTAR, 14
summary (summary.VLSTAR), 16
summary.VLSTAR, 16
techprices, 17
VLSTAR, 3, 8, 11, 15, 16, 17
VLSTARjoint, 20

