## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----installation, eval = FALSE----------------------------------------------- # devtools::install_github("https://github.com/AnnaWysocki/stim") ## ----data--------------------------------------------------------------------- library(stim) S <- matrix(c(1, .3, .3, .3, 1, .3, .3, .3, 1), nrow = 3, ncol = 3, dimnames = list(c("X", "Y", "Z"), c("X", "Y", "Z"))) ## ----modelspec1--------------------------------------------------------------- model <- 'Y ~ X' # outcome ~ predictor ## ----modelspec2--------------------------------------------------------------- model2 <- 'Y ~ X Z ~ X + Y' ## ----modelspec3--------------------------------------------------------------- model2 <- 'Y ~ X Z ~ X + Y X ~~ Y' # Allows X and Y to have covarying residuals ## ----modelspec4--------------------------------------------------------------- model2 <- 'Y ~ .6 * X # fix effect of X on Y to .6 Z ~ X + Y X ~~ Y' ## ----modelspec5--------------------------------------------------------------- model2 <- 'Y ~ .6 * X Z ~ Effect1 * X + Y # label the estimated effect of X on Z X ~~ Y' ## ----stability1--------------------------------------------------------------- stability <- c(X = .5, Y = .1, Z = .1) ## ----stability2--------------------------------------------------------------- stability <- data.frame(X = c(.5, .55), Y = c(.1, .15), Z = c(.1, .2)) rownames(stability) <- c("Model 1", "Model 2") stability ## ----stim1-------------------------------------------------------------------- modelFit <- stim(S = S, n = 1000, model = model2, stability = stability) ## ----------------------------------------------------------------------------- summary(modelFit) ## ----output 1----------------------------------------------------------------- modelFit$stability ## ----output 2----------------------------------------------------------------- modelFit$CLEffectTable ## ----output 3----------------------------------------------------------------- modelFit$CLMatrices ## ----output 4----------------------------------------------------------------- modelFit$RCovMatrices ## ----output 5----------------------------------------------------------------- modelFit$ARVector ## ----output 6----------------------------------------------------------------- lavaanSummary(modelFit) ## ----output 6.2--------------------------------------------------------------- lavaanSummary(modelFit, subset = 1) ## ----output 7----------------------------------------------------------------- modelFit$NoWarnings # Means no warnings for both models ## ----output 8----------------------------------------------------------------- modelFit$CSModelSyntax ## ----output 9----------------------------------------------------------------- modelFit$SIMSyntax ## ----output 10---------------------------------------------------------------- modelFit$modelImpliedEquations