## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----eval = FALSE------------------------------------------------------------- # library(stm) # library(quanteda) # # # prepare data # data <- corpus(gadarian, text_field = 'open.ended.response') # docvars(data)$text <- as.character(data) # # data <- tokens(data, remove_punct = TRUE) |> # tokens_wordstem() |> # tokens_remove(stopwords('english')) |> dfm() |> # dfm_trim(min_termfreq = 2) # # out <- convert(data, to = 'stm') # # # fit models and effect estimates # gadarian_3 <- stm(documents = out$documents, # vocab = out$vocab, # data = out$meta, # prevalence = ~ treatment + s(pid_rep), # K = 3, verbose = FALSE) # prep_3 <- estimateEffect(1:3 ~ treatment + s(pid_rep), gadarian_3, # meta = out$meta) # gadarian_5 <- stm(documents = out$documents, # vocab = out$vocab, # data = out$meta, # prevalence = ~ treatment + s(pid_rep), # K = 5, verbose = FALSE) # prep_5 <- estimateEffect(1:5 ~ treatment + s(pid_rep), gadarian_5, # meta = out$meta) # # # save objects in .RData file # save.image('stm_gadarian.RData') ## ----eval = FALSE------------------------------------------------------------- # library(stminsights) # run_stminsights()