## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 ) library(sumvar) library(ggplot2) library(dplyr) ## ----continuous--------------------------------------------------------------- # Example data set.seed(123) df <- tibble::tibble( age = rnorm(100, mean = 50, sd = 20), sex = sample(c("male", "female"), 100, replace = TRUE)) %>% dplyr::mutate(age = dplyr::if_else(sex == "male", age + 10, age)) # Call dist_sum df %>% dist_sum(age) df %>% dist_sum(age, sex) ## ----dates-------------------------------------------------------------------- df3 <- tibble::tibble( dates = as.Date("2022-01-01") + rnorm(n=100, sd=50, mean=0), group = sample(c("A", "B"), 100, TRUE)) %>% dplyr::mutate(dt = dplyr::case_when(group == "A" ~ dates + 10, TRUE ~ dates)) df3 %>% dist_date(dates) df3 %>% dist_date(dates, group) ## ----categorical-------------------------------------------------------------- df2 <- tibble::tibble( group = sample(LETTERS[1:3], 200, TRUE) ) df2 %>% tab1(group) ## ----duplicate---------------------------------------------------------------- example_data <- dplyr::tibble(id = 1:200, age = round(rnorm(200, mean = 30, sd = 50), digits=0)) example_data$age[sample(1:200, size = 15)] <- NA # Replace 20 values with missing. example_data %>% dup(age) ## ----duplicate_all------------------------------------------------------------ example_data <- dplyr::tibble(age = round(rnorm(200, mean = 30, sd = 50), digits=0), sex = sample(c("Male", "Female"), 200, TRUE), favourite_colour = sample(c("Red", "Blue", "Purple"), 200, TRUE)) example_data$age[sample(1:200, size = 15)] <- NA # Replace 15 values with missing. example_data$sex[sample(1:200, size = 32)] <- NA # Replace 32 values with missing. dup(example_data)