## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", results = "hold", collapse = TRUE, eval = TRUE, fig.pos = 'h', fig.align = 'center' ) ## ----------------------------------------------------------------------------- library(surveil) data(cancer) head(cancer) ## ----------------------------------------------------------------------------- data(standard) print(standard) ## ----------------------------------------------------------------------------- cancer2 <- subset(cancer, grepl("50-54|55-59|60-64|65-69", Age)) head(cancer2) ## ----------------------------------------------------------------------------- fit <- stan_rw(cancer2, time = Year, group = Age, refresh = 0,# silences some printing iter = 2e3, chains = 2) # for demo speed only. Use the default chains = 4 ## ----fig.height = 4.5, fig.width = 6.5---------------------------------------- plot(fit, facet = TRUE, # plot small multiples facet_scales = "free", # y-axes vary across plots base_size = 10, # control text size size = 0, # removes crude rates from the plots scale = 100e3 # plot rates per 100,000 ) ## ----fig.height = 4.5, fig.width = 6.5---------------------------------------- fit_apc <- apc(fit) plot(fit_apc, base_size = 10, cum = TRUE) ## ----------------------------------------------------------------------------- fit_sr <- standardize(fit, label = standard$age, standard_pop = standard$standard_pop) ## ----fig.height = 4, fig.width = 5-------------------------------------------- # load ggplot2 to enable additional plot customization library(ggplot2) plot(fit_sr, scale = 100e3, base_size = 10) + labs(title = "US age-standardized cancer incidence per 100,000", subtitle = "Ages 50-69") ## ----------------------------------------------------------------------------- print(fit_sr, scale = 100e3) ## ----------------------------------------------------------------------------- fit_sr_pc <- apc(fit_sr) ## ----------------------------------------------------------------------------- plot(fit_sr_pc, cum = TRUE)