## ----echo=FALSE,message=FALSE------------------------------------------------- knitr::opts_chunk$set(eval=TRUE) ## ----message=FALSE,warning=FALSE,class.source = 'fold-hide'------------------- library(survextrap) library(ggplot2) mspline <- list(knots=1:10, degree=3, bsmooth=FALSE) p_const <- mspline_constant_coefs(mspline) p_naive <- rep(1/13, 13) haz_unif <- mspline_plotdata(knots=mspline$knots, scale=10, coefs = p_const, bsmooth = FALSE) plot_mspline(knots=mspline$knots, bsmooth=FALSE, scale=10, coefs = p_naive, tmax=11) + geom_line(aes(x=time, y=haz), data=haz_unif, color="red", lwd=1.5, inherit.aes = FALSE) + annotate(geom="text", x=2, y=1.5, color="red", label="h(t): coefficients `p_const`") + annotate(geom="text", x=1.5, y=2.5, color="blue", label="h(t): coefficients `p_naive`") + xlab("Time t") + ylab("Hazard rate") ## ----------------------------------------------------------------------------- mspline <- list(knots=1:10, degree=3, bsmooth=TRUE) p_const <- mspline_constant_coefs(mspline) p_naive <- rep(1/11, 11) haz_unif <- mspline_plotdata(knots=mspline$knots, scale=1, coefs = p_const, bsmooth = TRUE) plot_mspline(knots=mspline$knots, bsmooth=TRUE, scale=1, coefs = p_naive, tmax=11) + geom_line(aes(x=time, y=haz), data=haz_unif, color="red", lwd=1.5, inherit.aes = FALSE) + annotate(geom="text", x=2, y=1.5, color="red", label="h(t): coefficients `p_const`") + annotate(geom="text", x=1.5, y=2.5, color="blue", label="h(t): coefficients `p_naive`") + xlab("Time t") + ylab("Hazard rate") + coord_cartesian(ylim=c(0,1)) ## ----------------------------------------------------------------------------- plot_mspline(knots=c(1, 3, 5, 7), coefs=c(0.01, 0.5, 0.1, 2, 0.6), tmax=10, bsmooth=TRUE) + coord_cartesian(ylim=c(0, 1.2)) ## ----fig.height=3,class.source = 'fold-hide'---------------------------------- knots <- 1:10 mspline <- list(knots=knots) p_mean <- mspline_constant_coefs(mspline) set.seed(1) p1 <- plot_prior_hazard(knots=knots, tmax=max(knots), coefs_mean = p_mean, prior_hsd = p_gamma(2, 40), prior_hscale = p_normal(0, 1), nsim=10) + ylim(0, 1) + ggtitle(bquote(sigma ~ " ~ Gamma(2,40)")) p2 <- plot_prior_hazard(knots=knots, tmax=max(knots), coefs_mean = p_mean, prior_hsd = p_gamma(2, 1), prior_hscale = p_normal(0, 1), nsim=10) + ylim(0, 1) + ggtitle(bquote(sigma ~ "~ Gamma(2,1)")) gridExtra::grid.arrange(p1, p2, nrow=1) ## ----message=FALSE,warning=FALSE---------------------------------------------- library(dplyr) library(survextrap) colons2 <- colons %>% filter(rx %in% c("Obs", "Lev")) %>% droplevels() rxph_mod <- survextrap(Surv(years, status) ~ rx, data=colons2, fit_method="opt", mspline=list(df=5)) plot(rxph_mod, tmax=10, niter=100) ## ----------------------------------------------------------------------------- nd_full <- data.frame(rx = c("Lev","Obs")) nd_null <- data.frame(rx = c("Obs","Obs")) ## ----------------------------------------------------------------------------- plot(rxph_mod, tmax=10, wane_period = c(5, 10), niter=1000, newdata = nd_full, newdata0 = nd_null) ## ----------------------------------------------------------------------------- rmst(rxph_mod, t=50, niter=100, newdata=nd_full) rmst(rxph_mod, t=50, niter=20, newdata=nd_full, newdata0=nd_null, wane_period = c(5,10))