## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) knitr::opts_chunk$set(fig.width = 5, fig.height = 5, fig.align = "center") ## ----setup, warning=FALSE, message=FALSE-------------------------------------- library(swaglm) ## ----------------------------------------------------------------------------- n <- 2000 p <- 100 # create design matrix and vector of coefficients Sigma <- diag(rep(1 / p, p)) X <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma) beta <- c(-15, -10, 5, 10, 15, rep(0, p - 5)) ## ----------------------------------------------------------------------------- # --------------------- generate from logistic regression with an intercept of one z <- 1 + X %*% beta pr <- 1 / (1 + exp(-z)) set.seed(12345) y <- as.factor(rbinom(n, 1, pr)) y <- as.numeric(y) - 1 ## ----------------------------------------------------------------------------- # define swag parameters quantile_alpha <- .15 p_max <- 20 ## ----------------------------------------------------------------------------- swag_obj <- swaglm::swaglm( X = X, y = y, p_max = p_max, family = stats::binomial(), alpha = quantile_alpha, verbose = TRUE, seed = 123 ) print(swag_obj) ## ----------------------------------------------------------------------------- swag_network <- compute_network(swag_obj) plot(swag_network, scale_vertex = 0.05) ## ----------------------------------------------------------------------------- B <- 10 res_test <- swaglm_test(swag_obj, B = B) print(res_test) ## ----------------------------------------------------------------------------- sigma2 <- 4 set.seed(12345) y <- 1 + X %*% beta + rnorm(n = n, mean = 0, sd = sqrt(sigma2)) ## ----------------------------------------------------------------------------- swag_obj <- swaglm::swaglm( X = X, y = y, p_max = p_max, family = stats::gaussian(), alpha = quantile_alpha, verbose = TRUE, seed = 123 ) print(swag_obj) ## ----------------------------------------------------------------------------- swag_network <- compute_network(swag_obj) plot(swag_network, scale_vertex = 0.05) ## ----------------------------------------------------------------------------- res_test <- swaglm_test(swag_obj, B = B) print(res_test) ## ----------------------------------------------------------------------------- eta <- 1 + X %*% beta lambda <- exp(eta) set.seed(12345) y <- rpois(n = n, lambda = lambda) ## ----------------------------------------------------------------------------- # Run swag procedure swag_obj <- swaglm::swaglm( X = X, y = y, p_max = p_max, family = stats::poisson(), alpha = quantile_alpha, verbose = TRUE, seed = 123 ) print(swag_obj) ## ----------------------------------------------------------------------------- swag_network <- compute_network(swag_obj) plot(swag_network, scale_vertex = 0.05) ## ----------------------------------------------------------------------------- res_test <- swaglm_test(swag_obj, B = B) print(res_test)