## ----setup, include = FALSE--------------------------------------------------- if (requireNamespace("glmnet", quietly = TRUE)) { library(tidypredict) library(glmnet) library(dplyr) eval_code <- TRUE } else { eval_code <- FALSE } knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = eval_code ) ## ----------------------------------------------------------------------------- library(glmnet) model <- glmnet::glmnet(mtcars[, -1], mtcars$mpg, lambda = 1) ## ----------------------------------------------------------------------------- tidypredict_fit(model) ## ----------------------------------------------------------------------------- library(dplyr) mtcars %>% tidypredict_to_column(model) %>% glimpse() ## ----------------------------------------------------------------------------- tidypredict_test(model, mtcars[, -1]) ## ----------------------------------------------------------------------------- library(parsnip) p_model <- linear_reg(penalty = 1) %>% set_engine("glmnet") %>% fit(mpg ~ ., data = mtcars) ## ----------------------------------------------------------------------------- tidypredict_fit(p_model) ## ----------------------------------------------------------------------------- pm <- parse_model(model) str(pm, 2) ## ----------------------------------------------------------------------------- str(pm$trees[1])