--- title: "glmnet models" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{glmnet models} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} if (requireNamespace("glmnet", quietly = TRUE)) { library(tidypredict) library(glmnet) library(dplyr) eval_code <- TRUE } else { eval_code <- FALSE } knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = eval_code ) ``` | Function |Works| |---------------------------------------------------------------|-----| |`tidypredict_fit()`, `tidypredict_sql()`, `parse_model()` | ✔ | |`tidypredict_to_column()` | ✔ | |`tidypredict_test()` | ✔ | |`tidypredict_interval()`, `tidypredict_sql_interval()` | ✗ | |`parsnip` | ✔ | ## `tidypredict_` functions ```{r} library(glmnet) model <- glmnet::glmnet(mtcars[, -1], mtcars$mpg, lambda = 1) ``` - Create the R formula ```{r} tidypredict_fit(model) ``` - Add the prediction to the original table ```{r} library(dplyr) mtcars %>% tidypredict_to_column(model) %>% glimpse() ``` - Confirm that `tidypredict` results match to the model's `predict()` results. ```{r} tidypredict_test(model, mtcars[, -1]) ``` ## parsnip `parsnip` fitted models are also supported by `tidypredict`: ```{r} library(parsnip) p_model <- linear_reg(penalty = 1) %>% set_engine("glmnet") %>% fit(mpg ~ ., data = mtcars) ``` ```{r} tidypredict_fit(p_model) ``` ## Parse model spec Here is an example of the model spec: ```{r} pm <- parse_model(model) str(pm, 2) ``` ```{r} str(pm$trees[1]) ```