## ------------------------------------------------------------------------ library(tpAUC) ## ---- fig.height=5 , fig.width=5, fig.align='center'--------------------- library('pROC') data(aSAH) tproc.est(aSAH$outcome, aSAH$s100b, threshold=c(0.8,0.2) ) #estimate two-way partial AUC ## ----fig.height=5 , fig.width=5, fig.align='center'---------------------- proc.est(aSAH$outcome, aSAH$s100b, method='expect',threshold=0.8 ) # use method 'expect' to estimate partial AUC proc.ci(aSAH$outcome,aSAH$s100b, cp=0.95 ,threshold=0.8,method='expect') # use method 'expect' to infer partial AUC ## ------------------------------------------------------------------------ proc(aSAH$outcome,aSAH$s100b,threshold=0.8, method='expect',ci=TRUE, cp=0.95 ) # set ci=TRUE to get confidence interval ## ----fig.height=5 , fig.width=5, fig.align='center'---------------------- podc.est(aSAH$outcome, aSAH$s100b, method='expect',threshold=0.8) # estimate FNR partial ODC with method 'expect' podc.ci(aSAH$outcome, aSAH$s100b, method='expect',threshold=0.8, cp=0.97) # infer FNR partial ODC with method 'expect' ## ------------------------------------------------------------------------ podc(aSAH$outcome, aSAH$s100b,threshold=0.8, method='expect',ci=TRUE, cp=0.97) # inference and estimation