## ----vignette, eval = FALSE--------------------------------------------------- # vignette("trackeR", package = "trackeR") ## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 7 ) ## ----runDF, message = FALSE--------------------------------------------------- library("trackeR") filepath <- system.file("extdata/tcx/", "2013-06-01-183220.TCX.gz", package = "trackeR") runDF <- readTCX(file = filepath, timezone = "GMT") ## ----str_runDF---------------------------------------------------------------- str(runDF) ## ----runTr0------------------------------------------------------------------- runTr0 <- trackeRdata(runDF) ## ----runTr1------------------------------------------------------------------- runTr1 <- read_container(filepath, type = "tcx", timezone = "GMT") identical(runTr0, runTr1) ## ----runs--------------------------------------------------------------------- data("runs", package = "trackeR") ## ----plot_runs, fig.width = 7, fig.height = 5--------------------------------- plot(runs, session = 1:7) ## ----plot_runs_2, fig.width = 7, fig.height = 5------------------------------- plot(runs, session = 8, what = c("altitude", "pace")) ## ----plotRoute, message = FALSE, warning = FALSE, fig.width = 7, fig.height = 7---- tryCatch(plot_route(runs, session = 1, source = "stamen"), error = function(x) "Failed to donwload map data") ## ----leafletRoute, fig.width = 7, fig.height = 7------------------------------ tryCatch(leaflet_route(runs, session = c(1, 6, 12)), error = function(x) "Failed to donwload map data") ## ----summary------------------------------------------------------------------ summary(runs, session = 1, moving_threshold = c(cycling = 2, running = 1, swimming = 0.5)) ## ----plot_summary, fig.width = 7, fig.height = 7------------------------------ runs_summary <- summary(runs) plot(runs_summary, group = c("total", "moving"), what = c("avgSpeed", "distance", "duration", "avgHeartRate")) ## ----timeline, fig.width = 7, fig.height = 7---------------------------------- timeline(runs_summary) ## ----plot_zones, fig.width = 7, fig.height = 5-------------------------------- run_zones <- zones(runs[1:4], what = "speed", breaks = c(0, 2:6, 12.5)) plot(run_zones) ## ----plot_Wprime, fig.width = 7, fig.height = 5------------------------------- wexp <- Wprime(runs, session = 11, quantity = "expended", cp = 4, version = "2012") plot(wexp, scaled = TRUE) ## ----distProfile, fig.width = 7, fig.height = 5------------------------------- d_profile <- distribution_profile(runs, session = 1:4, what = "speed", grid = list(speed = seq(0, 12.5, by = 0.05))) plot(d_profile, multiple = TRUE) ## ----conProfile, fig.width = 7, fig.height = 5-------------------------------- c_profile <- concentrationProfile(d_profile, what = "speed") plot(c_profile, multiple = TRUE, smooth = TRUE) ## ----prep_profiles, fig.width = 7, fig.height = 5----------------------------- runsT <- threshold(runs) dp_runs <- distribution_profile(runsT, what = "speed") dp_runs_S <- smoother(dp_runs) cp_runs <- concentration_profile(dp_runs_S) plot(cp_runs, multiple = TRUE, smooth = FALSE) ## ----funPCA------------------------------------------------------------------- cpPCA <- funPCA(cp_runs, what = "speed", nharm = 4) ## ----plot_fPCA, fig.width = 7, fig.height = 7--------------------------------- round(cpPCA$varprop, 2) plot(cpPCA, harm = 1:2) ## ----plot_scores, fig.show = 'hold', fig.width = 7, fig.height = 5------------ ## plot scores vs summary statistics scoresSP <- data.frame(cpPCA$scores) names(scoresSP) <- paste0("speed_pc", 1:4) d <- cbind(runs_summary, scoresSP) library("ggplot2") ## pc1 ~ session duration (moving) ggplot(d) + geom_point(aes(x = as.numeric(durationMoving), y = speed_pc1)) + theme_bw() ## pc2 ~ avg speed (moving) ggplot(d) + geom_point(aes(x = avgSpeedMoving, y = speed_pc2)) + theme_bw()