| Title: | Build Tables for Publication | 
| Version: | 0.3.0 | 
| Description: | Functions for building customized ready-to-export tables for publication. | 
| License: | LGPL-2 | LGPL-2.1 | LGPL-3 [expanded from: LGPL (≥ 2)] | 
| URL: | https://efinite.github.io/utile.tables/ | 
| BugReports: | https://github.com/efinite/utile.tables/issues | 
| Encoding: | UTF-8 | 
| Depends: | R (≥ 3.4.0) | 
| Imports: | dplyr, purrr (≥ 1.0.0), rlang, tidyselect, utile.tools (≥ 0.3.0) | 
| Suggests: | survival | 
| RoxygenNote: | 7.2.3 | 
| NeedsCompilation: | no | 
| Packaged: | 2023-01-24 00:29:52 UTC; Eric | 
| Author: | Eric Finnesgard [aut, cre], Jennifer Grauberger [aut] | 
| Maintainer: | Eric Finnesgard <efinite@outlook.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2023-01-24 10:40:02 UTC | 
Build models
Description
Models specified terms in model data against an existing model and returns a clean, human readable table of summarizing the effects and statistics for the newly generated model. This function is meant to simplify fitting a large number of variables against a set of time-to-event data.
Usage
build_model(.object, ...)
Arguments
| .object | An object of a supported class. See S3 methods below. | 
| ... | Arguments passed to the appropriate S3 method. | 
Value
An object of class tbl_df (tibble) summarizing the provided
object.
See Also
Build Cox PH models
Description
Models specified terms in model data against an existing model and returns a clean, human readable table of summarizing the effects and statistics for the newly generated model. This functions greatly simplifies fitting a large number of variables against a set of time-to-event data.
Usage
## S3 method for class 'coxph'
build_model(
  .object,
  ...,
  .mv = FALSE,
  .test = c("LRT", "Wald"),
  .col.test = FALSE,
  .level = 0.95,
  .stat.pct.sign = TRUE,
  .digits = 1,
  .p.digits = 4
)
Arguments
| .object | An object of class  | 
| ... | One or more unquoted expressions separated by commas representing
columns in the model data.frame. May be specified using
 | 
| .mv | A logical. Fit all terms into a single multivariable model. If left FALSE, all terms are fit in their own univariate models. | 
| .test | A character. The name of a  | 
| .col.test | A logical. Append a columns for the test and accompanying statistic used to derive the p-value. | 
| .level | A double. The confidence level required. | 
| .stat.pct.sign | A logical. Paste a percent symbol after all reported frequencies. | 
| .digits | An integer. The number of digits to round numbers to. | 
| .p.digits | An integer. The number of p-value digits to report. Note
that the p-value still rounded to the number of digits specified in
 | 
Value
An object of class data.frame summarizing the provided object. If the
tibble package has been installed, a tibble will be returned.
See Also
Examples
library(survival)
library(dplyr)
data_lung <- lung |>
  mutate_at(vars(inst, status, sex), as.factor) |>
  mutate(status = case_when(status == 1 ~ 0, status == 2 ~ 1))
fit <- coxph(Surv(time, status) ~ 1, data = data_lung)
# Create a univariate model for each variable
fit |> build_model(sex, age)
Build summary rows
Description
Summarize data into a data.frame with row(s). Includes optional stratification and null hypothesis testing using a factor or logical variable.
Usage
build_row(x, ...)
## S3 method for class 'data.frame'
build_row(
  x,
  y = NA_real_,
  label = NULL,
  label.stat = TRUE,
  stat.pct.sign = FALSE,
  col.overall = TRUE,
  col.missing = FALSE,
  col.test = FALSE,
  digits = 1,
  ...
)
## S3 method for class 'numeric'
build_row(
  x,
  y = NA_real_,
  label = NULL,
  label.stat = TRUE,
  stat = c("mean", "median"),
  stat.pct.sign = FALSE,
  col.overall = TRUE,
  col.missing = FALSE,
  test = c("anova", "kruskal", "wilcoxon"),
  col.test = FALSE,
  digits = 1,
  p.digits = 4,
  ...
)
## S3 method for class 'logical'
build_row(
  x,
  y = NA_real_,
  label = NULL,
  label.stat = TRUE,
  inverse = FALSE,
  stat.pct.sign = FALSE,
  col.overall = TRUE,
  col.missing = FALSE,
  test = c("chisq", "fisher"),
  test.simulate.p = FALSE,
  col.test = FALSE,
  digits = 1,
  p.digits = 4,
  ...
)
## S3 method for class 'factor'
build_row(
  x,
  y = NA_real_,
  label = NULL,
  label.stat = TRUE,
  stat.pct.sign = FALSE,
  col.overall = TRUE,
  col.missing = FALSE,
  test = c("chisq", "fisher"),
  test.simulate.p = FALSE,
  col.test = FALSE,
  digits = 1,
  p.digits = 4,
  ...
)
Arguments
| x | A data.frame, numeric, factor, or logical. Data to summarize. | 
| ... | Arguments passed to the appropriate S3 method. | 
| y | A factor or logical. Data to optionally stratify  | 
| label | A character. A label for the summarized data. | 
| label.stat | A logical. Append the summary statistic used to the label. | 
| stat.pct.sign | A logical. Paste a percentage symbol with each frequency. frequency. | 
| col.overall | A logical. Append a column with the statistic for all data.
If  | 
| col.missing | A logical. Append a column with counts of missing data. | 
| col.test | A logical. Append a column with the name of the statistical test used. | 
| digits | An integer. Number of digits to round to. | 
| stat | A character. Name of the summary statistic to use. Supported options
include the mean ( | 
| test | A character. Name of statistical test to compare groups.
Supported options: [continuous data] ANOVA linear model ( | 
| p.digits | An integer. Number of p-value digits to report. | 
| inverse | A logical. For logical data, report frequencies of the
 | 
| test.simulate.p | A logical. Whether to use Monte Carlo simulation of the p-value when testing nominal data. | 
Value
An object of class tbl_df (tibble) summarizing the provided
data.
Examples
strata <- as.factor(datasets::mtcars$cyl)
# Create a "count" row from a data.frame for a factor
build_row(x = datasets::mtcars, y = strata)
# Create a row summarizing a numeric by a factor
build_row(label = 'MPG', x = as.numeric(datasets::mtcars$mpg), y = strata)
# Create a row summarizing a logical by a factor
build_row(label = 'VS', x = as.logical(datasets::mtcars$vs), y = strata)
# Create a row summarizing a factor by a factor
build_row(label = 'Carb', x = as.factor(datasets::mtcars$carb), y = strata)
Build summary tables
Description
Takes a data or model object and summarizes it into a ready to export, human-readable summary table.
Usage
build_table(.object, ...)
Arguments
| .object | An object of a supported class. See S3 methods below. | 
| ... | Arguments passed to the appropriate S3 method. | 
Value
An object of class tbl_df (tibble) summarizing the provided object.
See Also
build_table.data.frame,
build_table.coxph,
build_table.lm
Build summary tables from coxph model objects
Description
Takes a Cox PH model object and summarizes it into a ready to export, human-readable summary table.
Usage
## S3 method for class 'coxph'
build_table(
  .object,
  ...,
  .test = c("LRT", "Wald"),
  .col.test = FALSE,
  .level = 0.95,
  .stat.pct.sign = TRUE,
  .digits = 1,
  .p.digits = 4
)
Arguments
| .object | An object of class  | 
| ... | One or more unquoted expressions separated by commas representing
columns in the data.frame. May be specified using
 | 
| .test | A character. The name of the
 | 
| .col.test | A logical. Append a columns for the test and accompanying statistic used to derive the p-value. | 
| .level | A double. The confidence level required. | 
| .stat.pct.sign | A logical. Paste a percent symbol after all reported frequencies. | 
| .digits | An integer. The number of digits to round numbers to. | 
| .p.digits | An integer. The number of p-value digits to report. Note
that the p-value still rounded to the number of digits specified in
 | 
Value
An object of class tbl_df (tibble) summarizing the provided
object.
See Also
Examples
library(survival)
library(dplyr)
data_lung <- lung |>
  mutate_at(vars(inst, status, sex), as.factor) |>
  mutate(status = case_when(status == 1 ~ 0, status == 2 ~ 1))
fit <- coxph(Surv(time, status) ~ sex + meal.cal, data = data_lung)
fit |> build_table(Sex = sex, Calories = meal.cal, .test = 'LRT')
Build summary tables from data.frame objects
Description
Takes a data.frame object and summarizes the columns into a ready to export, human-readable summary table. Capable of stratifying data and performing appropriate hypothesis testing.
Usage
## S3 method for class 'data.frame'
build_table(
  .object,
  ...,
  .by,
  .inverse = FALSE,
  .label.stat = TRUE,
  .stat = c("mean", "median"),
  .stat.pct.sign = FALSE,
  .col.overall = TRUE,
  .col.missing = FALSE,
  .test.continuous = c("anova", "kruskal", "wilcoxon"),
  .test.nominal = c("chisq", "fisher"),
  .test.simulate.p = FALSE,
  .col.test = FALSE,
  .digits = 1,
  .p.digits = 4
)
Arguments
| .object | A data.frame. | 
| ... | One or more unquoted expressions separated by commas representing
columns in the data.frame. May be specified using
 | 
| .by | An unquoted expression. The data column to stratify the summary by. | 
| .inverse | A logical. For logical data, report the frequency of FALSE values instead of the TRUE. | 
| .label.stat | A logical. Append the type of summary statistic to the column label. | 
| .stat | A character. Name of the summary statistic to use for numeric data. Supported options include the mean ('mean') and median ('median'). | 
| .stat.pct.sign | A logical. Paste a percent symbol after all reported frequencies. | 
| .col.overall | A logical. Append a column with the statistic for all data.
If  | 
| .col.missing | A logical. Append a column listing the frequencies of missing data for each row. | 
| .test.continuous | A character. A character. Name of statistical test to compare groups. Supported options include ANOVA linear model ('anova'), Kruskal-Wallis ('kruskal'), and Wilcoxon rank sum ('wilcoxon') tests. | 
| .test.nominal | A character. Name of statistical test to compare groups. Supported options include Pearson's Chi-squared Test ('chisq') and Fisher's Exact Test ('fisher'). | 
| .test.simulate.p | A logical. Whether to use Monte Carlo simulation of the p-value when testing nominal data. | 
| .col.test | A logical. Append a column containing the test each p-value was derived from. | 
| .digits | An integer. The number of digits to round numbers to. | 
| .p.digits | An integer. The number of p-value digits to report. | 
Value
An object of class tbl_df (tibble) summarizing the provided
object.
See Also
Examples
# Sample data
df <- data.frame(
  strata = factor(sample(letters[2:3], 1000, replace = TRUE)),
  numeric = sample(1:100, 1000, replace = TRUE),
  numeric2 = sample(1:100, 1000, replace = TRUE),
  factor = factor(sample(1:5, 1000, replace = TRUE)),
  logical = sample(c(TRUE,FALSE), 1000, replace = TRUE)
)
# Summarize all columns
build_table(df, .by = strata)
# Summarize & rename selected columns
build_table(df, numeric2, factor, .by = strata)
Build summary tables from lm model objects
Description
Takes a linear regression model object and summarizes it into a ready to export, human-readable summary table.
Usage
## S3 method for class 'lm'
build_table(
  .object,
  ...,
  .test = c("F", "Chisq"),
  .col.test = FALSE,
  .level = 0.95,
  .stat.pct.sign = TRUE,
  .digits = 1,
  .p.digits = 4
)
Arguments
| .object | An object of class  | 
| ... | One or more unquoted expressions separated by commas representing
columns in the data.frame. May be specified using
 | 
| .test | A character. The name of the
 | 
| .col.test | A logical. Append a columns for the test and accompanying statistic used to derive the p-value. | 
| .level | A double. The confidence level required. | 
| .stat.pct.sign | A logical. Paste a percent symbol after all reported frequencies. | 
| .digits | An integer. The number of digits to round numbers to. | 
| .p.digits | An integer. The number of p-value digits to report. Note
that the p-value still rounded to the number of digits specified in
 | 
Value
An object of class tbl_df (tibble) summarizing the provided
object.
See Also
Examples
library(dplyr)
data_mtcars <- datasets::mtcars |>
  mutate_at(vars('vs', 'am'), as.logical) |>
  mutate_at(vars('gear', 'carb', 'cyl'), as.factor)
fit <- lm(mpg ~ vs + drat + cyl, data = data_mtcars)
fit |> build_table()
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
- tidyselect
- all_of,- any_of,- contains,- ends_with,- everything,- last_col,- matches,- num_range,- one_of,- starts_with