## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(vaccinationimpact) ## ----example------------------------------------------------------------------ data(coverage_and_incidence_mock_data) coverage <- coverage_and_incidence_mock_data$coverage_data incidence <- coverage_and_incidence_mock_data$incidence_data ## ----------------------------------------------------------------------------- head(coverage) ## ----------------------------------------------------------------------------- head(incidence) ## ----------------------------------------------------------------------------- data(ve_mock_data) head(ve_mock_data) ## ----------------------------------------------------------------------------- vaccine_effectiveness <- ve_mock_data$ve nae <- compute_events_averted_by_vaccination( number_of_events = incidence$events, cumulative_coverage = coverage$cumulative_coverage, vaccine_effectiveness = vaccine_effectiveness ) plot(nae, type = "l", xlab = "Time", ylab = "Events averted") ## ----------------------------------------------------------------------------- nabe <- compute_events_avertable_by_increasing_coverage( number_of_events = incidence$events, cumulative_coverage = coverage$cumulative_coverage, vaccine_coverage_increase = 0.1, # 10% increase in final coverage vaccine_effectiveness = vaccine_effectiveness ) ## ----------------------------------------------------------------------------- plot(nabe$new_vaccine_coverage, type = "l", xlab = "Time", ylab = "Vaccine coverage with 10% increase") ## ----------------------------------------------------------------------------- plot(nabe$nabe, type = "l", xlab = "Time", ylab = "Events averted") ## ----------------------------------------------------------------------------- sample_size <- 1234 nnv <- compute_number_needed_to_vaccinate_machado( number_of_events = incidence$events, number_of_events_averted = nae, population_size = sample_size, vaccine_effectiveness = vaccine_effectiveness ) nnv ## ----------------------------------------------------------------------------- nnv <- compute_number_needed_to_vaccinate_tuite_fisman( number_of_vaccinated = cumsum(coverage$number_of_vaccinated), number_of_events_averted = nae ) nnv