Package ‘vectorialcalculus’

January 19, 2026
Type Package
Title Vector Calculus Tools for Visualization and Analysis
Version 1.0.5
Maintainer Julian Mauricio Fajardo <julian.fajardo1908@gmail.com>

Description Provides pedagogical tools for visualization and numerical computation in vector calcu-
lus. Includes functions for parametric curves, scalar and vector fields, gradients, diver-
gences, curls, line and surface integrals, and dynamic 2D/3D graphical analysis to support teach-
ing and learning. The implemented methods follow standard treatments in vector calcu-
lus and multivariable analysis as presented in Mars-
den and Tromba (2011) <ISBN:9781429215084>, Stew-
art (2015) <ISBN:9781285741550>, Thomas, Weir and Hass (2018) <ISBN:9780134438986>, Lar-
son and Edwards (2016) <ISBN:9781285255869>, Apos-
tol (1969) <ISBN:9780471000051>, Spi-
vak (1971) <ISBN:9780805390216>, Schey (2005) <ISBN:9780071369080>, Col-
ley (2019) <ISBN:9780321982384>, Lizarazo Osorio (2020) <ISBN:9789585450103>, Siev-
ert (2020) <ISBN:9780367180165>, and Borowko (2013) <ISBN:9781439870791>.

License MIT + file LICENSE
URL https://github.com/JulianFajardo1908/vectorialcalculus

BugReports https://github.com/JulianFajardo1908/vectorialcalculus/issues
Depends R (>=4.1.0)
Imports tibble, stats, utils

Suggests plotly, pracma, ggplot2, grDevices, purrr, testthat (>=
3.0.0)

Config/testthat/edition 3
Encoding UTF-8
Language en
RoxygenNote 7.3.3
NeedsCompilation no

Author Julio Lizarazo Osorio [aut],
Julian Mauricio Fajardo [aut, cre]

Repository CRAN
Date/Publication 2026-01-19 17:50:02 UTC

https://github.com/JulianFajardo1908/vectorialcalculus
https://github.com/JulianFajardo1908/vectorialcalculus/issues

2 Contents

Contents
arc_length3d 3
binormal3d e 4
critical_points_2d 6
critical_points_nd 8
curl3d . . . e e e 11
curvature_torsion3d L L L L e e e 12
curve_sample3d 14
cylindrical_surface3d 15
directional_derivative3d L e 17
divergence_field 20
frenet_frame3d e 21
gradient_direction2d 23
gradient_scalar e e e 25
integrate_double_polar 26
integrate_double_Xy 27
integrate_triple_general 28
lagrange_check L 29
line_integral2d 32
line_integral3d_work 34
line_integral_vector2d e 36
newton_raphson2d L. e e 38
Newton_raphson_animot e e e e e e e e e 40
normal3d e e 42
osculating_circle3d 44
osculating_ribbon3d L. 46
partial_derivatives_surface oL 49
plot_curve3d e e e e e 50
plot_surface_with_tangents e 52
region_Xyz0 e 53
related_rates_grad L e 56
riemann_prisms3d 57
riemann_rectangles2do 59
riemann_sum_ld_plot 60
riemann_sum_2d_plot L e e 62
SECANT_LANZENL o v v v i e e e e e e e e e e e e e e e e e e 64
solid_cylindrical3d 66
solid_of_revolution_y L 68
solid_spherical3d 70
solid_xyz3do 72
streamline_and_field3d 76
surface_integral_z e e e 79
surface_parametric_areao e e e e e e 81
tangent3d L L L e e 83
tangent plane3d L 85
total_differential nd L 88

vector_field3d e 89

arc_length3d 3

XY_TEZION o o e e e e e e e e e e e e e 91
Index 94
arc_length3d Numeric arc length of a 3D parametric curve
Description

Computes a numerical approximation to the arc length of the parametric curve (X (¢),Y (¢), Z(t))
on the interval [a, b] by integrating the speed \/(dz/dt)? + (dy/dt)? + (dz/dt)2.

Usage
arc_length3d(
X,

’

O N <

’

o

h = 1e-06,

method_int = c("romberg”, "integrate”),

n_samples = 400,

plot = FALSE,

plot_mode = "lines"”,

plot_line = list(color = "blue"”, width = 3, dash = "solid"),

plot_marker = NULL,

plot_title = NULL,

plot_scene = list(xaxis = list(title = "x(t)"), yaxis = list(title = "y(t)"), zaxis =
list(title = "z(t)")),

plot_bg = list(paper = "white"”, plot = "white")

)
Arguments

X, Y, Z Functions of one variable t defining the parametric curve coordinates.

a,b Numeric parameter limits for t.

h Numeric step size for centered finite differences used to approximate the deriva-
tives dX/dt, dY/dt, and dZ/dt.

method_int Character string. Either "romberg” (requires the pracma package) or "integrate”
(base R).

n_samples Integer. Number of sample points used when plotting the curve (if plot = TRUE).

plot Logical. If TRUE, the function also produces a 3D visualization of the curve
using plot_curve3d().

plot_mode Character string passed to plot_curve3d() as the mode argument.

plot_line List with line styling options passed to plot_curve3d().

4 binormal3d

plot_marker Optional list with marker styling options passed to plot_curve3d(), or NULL.

plot_title Optional title for the plot. If NULL, a title including the estimated arc length is
generated.
plot_scene List specifying 3D axes and options, passed to plot_curve3d().
plot_bg List with background colors, passed to plot_curve3d().
Details

Derivatives are approximated by centered finite differences and the integral is computed either by
Romberg integration (via pracma) or by integrate from base R. Optionally, the curve can be
visualized with plot_curve3d().

Value

A single numeric value: the approximated arc length of the curve on the interval [a, b].

See Also

curve_sample3d(), plot_curve3d()

Examples

X <- function(t) t*2 x cos(t)

Y <- function(t) t*3 * sin(3 * t)
Z <- function(t) t
arc_length3d(X, Y, Z, @, 2 * pi)

\donttest{
if (requireNamespace("plotly"”, quietly = TRUE)) {
arc_length3d(

X, Y, Z, 0, 2 % pi,

plot = TRUE,

plot_line = list(color = "red”, width = 3),

n_samples = 300

)

#}

3}

binormal3d Binormal vectors along a 3D parametric curve

Description

Computes numerical binormal vectors of a three-dimensional parametric curve at selected parame-
ter values. The curve is given by three coordinate functions. At each evaluation point, the first and
second derivatives of the curve are approximated numerically, and their cross-product direction is
normalized to obtain the binormal vector.

binormal3d

Usage

binormal3d(
X,

Y,

Z,

a)

b,

t_points,

h = 1e-04,

plot = FALSE,

n_samples
vec_scale

vec_factor =
curve_line

400,
NULL,

1,

list(color = "blue”, width = 2, dash = "solid"),

B_line = list(color = "black”, width = 5, dash = "solid"),

show_curve

TRUE,

show_points = TRUE,

point_marker

= list(color = "black"”, size = 3, symbol = "circle"),

scene = list(aspectmode = "data”, xaxis = list(title = "x(t)"), yaxis = list(title

"y(t)"), zaxis
bg = list(paper

tol = le-1

Arguments

X

a
b
t_points
h

plot

n_samples

vec_scale

vec_factor
curve_line

B_line

0

list(title = "z(t)")),
“White”, p]_Ot = “White”),

Function returning the x coordinate of the curve as a function of the parameter
t.

Function returning the y coordinate of the curve as a function of the parameter
t.

Function returning the z coordinate of the curve as a function of the parameter
t

Lower endpoint of the parameter interval.

Upper endpoint of the parameter interval.

Numeric vector of parameter values for evaluation and optional plotting.
Step size for centered finite-difference approximations.

Logical; if TRUE, produces a plotly 3D visualization showing the curve and the
binormal vectors.

Number of points used to sample and display the curve in the plot.

Base length used for binormal segments. If NULL, it is estimated as a small
proportion of the size of the sampled curve.

Multiplicative factor applied to vec_scale to adjust segment length.
List with plotly style options for drawing the base curve.

List with plotly style options for the binormal segments.

6 critical_points_2d

show_curve Logical; if TRUE, the base curve is included in the plot.
show_points Logical; if TRUE, the evaluation points are marked in the plot.

point_marker List with plotly marker options for the evaluation points.

scene List with 3D scene settings for the plotly figure.
bg Background color configuration for the plotly figure.
tol Numeric tolerance for detecting situations in which the derivative information is

too weak to determine a stable binormal direction.

Details
For every value in t_points, the function:

» computes centered finite-difference approximations of the first and second derivatives,
* forms a direction perpendicular to both derivatives,
* normalizes that direction to obtain a unit binormal vector.
If the first derivative is extremely small or if the first and second derivative vectors are nearly

parallel, the binormal direction cannot be determined reliably. In these cases, the function returns
NA for the affected components.

Optionally, the function can display the curve and the associated binormal segments in an interactive
3D plot using plotly. The sampled curve, evaluation points and binormal segments can be shown
or hidden independently.

Value

A tibble with columns t, X, y, z, Bx, By and Bz, containing the components of the binormal vector
at each evaluation point.

Examples

X <- function(t) t * cos(t)

Y <- function(t) t * sin(3 * t)

Z <- function(t) t

binormal3d(X, Y, Z, a = @, b = 2 * pi, t_points = c(pi / 3, pi, 5 * pi / 3))

critical_points_2d Critical points of a two-variable function using gradient and Hessian

Description

Identifies stationary points of a function of two variables over a given rectangular domain. A set of
initial points is generated on a regular grid together with additional random starting points. Each
start is refined using numerical optimization applied to the squared gradient norm. Points with a
sufficiently small gradient norm are kept and then merged if they are too close to each other.

critical_points_2d 7

Usage

critical_points_2d(
f,
xlim,
ylim,
start_n = c(7L, 7L),
n_rand = 40L,
h = NULL,
tol_grad = 1e-06,
tol_merge = 0.001,
tol_eig = 1e-06,

maxit = 200,

optim_method = c("BFGS"”, "Nelder-Mead"),
plot = TRUE,

grid_plot = c(60L, 60L),
surface_colorscale = "Y1GnBu",

surface_opacity = 0.85,

cp_colors = list(minimum = "#2ca@2c", maximum = "#d62728", saddle = "#1f77b4", flat =
"#ff7foe"),

cp_size = 6,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "f(x,y)"))

)
Arguments

f Function of two variables f(x, y) returning a numeric scalar.

xlim Numeric vector c(xmin, xmax) defining the domain in the x-direction.

ylim Numeric vector c(ymin, ymax) defining the domain in the y-direction.

start_n Integer vector of length two. Number of regular starting points per axis for the
grid.

n_rand Integer. Number of additional random starting points inside the domain.

h Numeric step size for finite-difference gradients and Hessians. If NULL, an auto-
matic step size is used.

tol_grad Numeric tolerance. Points with gradient norm below this threshold are treated
as stationary.

tol_merge Numeric tolerance for merging nearby solutions.

tol_eig Numeric tolerance used when classifying eigenvalues of the Hessian.

maxit Maximum number of iterations permitted for numerical optimization.

optim_method Character string naming an optimization method supported by stats: :optim,
such as "BFGS" or "Nelder-Mead".

plot Logical. If TRUE, a plotly surface with critical points is drawn.

grid_plot Integer vector of length two. Resolution of the grid used when drawing the
surface.

8 critical_points_nd

surface_colorscale

Character. Name of the Plotly colorscale for the surface.
surface_opacity

Numeric between 0 and 1 giving the opacity of the surface.

cp_colors Named list mapping each critical point type to a color. Expected names: "minimum”,
"maximum”, "saddle"”, "flat".

cp_size Numeric. Size of the point markers.
scene List of Plotly scene options (axis titles, aspect mode, and so on).
Details

Each surviving point is classified based on the eigenvalues of the numerical Hessian matrix. The
Hessian classification uses four categories:

* "minimum” - both eigenvalues positive,
* "maximum” - both eigenvalues negative,
* "saddle"” - mixed signs,

* "flat"” - small eigenvalues, inconclusive classification.

Optionally, a 3D surface with the detected critical points can be displayed using plotly.

Value

A list with:

critical_points A data frame with columns X, y, z, the gradient norm, and the classification
label.

fig A plotly object if plot = TRUE, or NULL otherwise.

Examples

f <- function(x, y) x*2 + y*2
critical_points_2d(f, xlim = c(-2, 2), ylim = c(-2, 2), plot = FALSE)

critical_points_nd Critical points of a scalar field in n dimensions (no plot)

Description

Searches for approximate critical points of a scalar field f (x) in dimension n >= 3 over a rectangular
domain. The algorithm looks for points where the gradient is close to zero by minimizing the
squared gradient norm g(x) = | |grad f(x) | | *2 from multiple starting points.

critical_points_nd

Usage

critical_points_nd(

f,

bounds,

start_grid = NULL,
n_random = 50L,
max_grid_starts = 2000L,
h = NULL,

tol_grad = 1e-06,
tol_merge = 0.001,
tol_eig = 1e-06,

maxit = 200,
optim_method = c("BFGS",
seed = NULL,
store_hessian = FALSE

"Nelder-Mead"),

Arguments

.F

bounds

start_grid

n_random

max_grid_starts

tol_grad

tol_merge

tol_eig

maxit

Scalar field as function(x), where x is a numeric vector of length n, returning
a numeric scalar.

Domain bounds. Either:

e an n x 2 numeric matrix or data frame with columns lower and upper, or

* alist of length n, each element a numeric vector c(lower, upper).

Integer vector of length n with the number of regular grid points per dimension
used as deterministic starting points. If NULL, a default rep(5, n) is used. The
total number of grid points is limited by max_grid_starts.

Integer. Number of additional random starting points sampled uniformly inside
the domain defined by bounds.

Maximum number of deterministic grid starting points that are actually used. If
the full grid would exceed this value, a random subset of that size is taken.

Step size for finite differences. Can be:

e NULL: automatic componentwise step size 1e-4 x (1 + abs(x_1i)),
* anumeric scalar: same step for all coordinates,

* anumeric vector of length n: one step per coordinate.

Numeric threshold on the gradient norm used to accept a point as critical. Smaller
values make the criterion more strict.

Numeric radius used to merge nearby critical point candidates (Euclidean dis-
tance).

Numeric tolerance used to decide whether Hessian eigenvalues are treated as
positive, negative or close to zero for classification.

Maximum number of iterations allowed for each call to stats: :optim().

10 critical_points_nd

optim_method Primary optimization method passed to stats: :optim(), for example "BFGS”
or "Nelder-Mead". If the primary method fails with an error, the function falls
back to "Nelder-Mead".

seed Optional integer seed for reproducibility of the random starting points.

store_hessian Logical. If TRUE, the Hessian matrix at each critical point is stored and returned.

Details

Candidate points that are closer than tol_merge (in Euclidean distance) are merged into a single
representative. Each accepted point is classified by the eigenvalues of the numerical Hessian as

non

"minimum”, "maximum”, "saddle"” or "flat".

Gradients and Hessians are computed with second-order central finite differences.

Value
A list with components:
critical_points A dataframe with columns x1, ..., xn, the function value f, the gradient norm
grad_norm, and the classification label class.
eigvals A list of numeric vectors containing the Hessian eigenvalues for each critical point.

hessians If store_hessian = TRUE, a list of Hessian matrices (one per critical point). Otherwise
NULL.

starts_info A list with information about the number of grid and random starting points actually
used.

Examples

Example 1: unique minimum at (1, 1, 1)

f1 <= function(x) sum((x - 1)*2)

B <- rbind(c(-2, 3), c(-2, 3), c(-2, 3)) # 3D bounds
res1l <- critical_points_nd(

f1,

bounds = B,
start_grid = c(5, 5, 5),
n_random = 50,

seed =1

)

resl$critical_points

Example 2: saddle at the origin in 3D

f2 <- function(x) x[11%2 + x[2]*2 - x[3]*2
B2 <- rbind(c(-1, 1), c(-1, 1), c(-1, 1))
res2 <- critical_points_nd(

f2,

bounds = B2,
start_grid = c(5, 5, 5),
n_random = 30,

seed =123

)

res2$critical_points

curl3d 11

Example 3 (4D): multiple critical points

f3 <= function(x) sum(x*4 - 2 *x x*2)

B3 <- do.call(rbind, replicate(4, c(-2, 2), simplify = FALSE))
res3 <- critical_points_nd(

f3,

bounds = B3,
start_grid = rep(4, 4),
n_random = 200,

seed = 42

)

head(res3$critical_points)

curl3d Numerical curl of a three-dimensional vector field

Description

Computes the curl of a vector field in three dimensions at a given point, using second-order central
finite differences. The field may optionally depend on a time parameter; if so, the curl is evaluated
at a fixed time value.

Usage

curl3d(field, x, y, z, h = NULL, tval = @, method = c("central”))

Arguments
field A function representing the vector field. It can be defined as function(x, vy,
z) oras function(x, y, z, t). It must return a numeric vector c(Fx, Fy, Fz).
X, Y, Z Numeric scalars giving the coordinates of the evaluation point.
h Step size for finite differences. It may be:
* asingle numeric value,
¢ anumeric vector of length three,
¢ or NULL (automatic selection).
tval Time value used when the vector field depends on time. Default is .
method Differencing scheme. Currently only "central” is supported.
Details

The vector field must be a function that returns a numeric vector of length three representing the
components of the field at a point. The curl is obtained by approximating the partial derivatives of
the field components with respect to each coordinate direction using symmetric finite differences.

The step size for each coordinate can be:

12 curvature_torsion3d

* asingle scalar used for all three axes,
* anumeric vector of length three providing separate steps for the x, y and z directions,
* or NULL, in which case automatic step sizes are chosen based on the evaluation point.
The method currently implemented is the second-order central differencing scheme. Smaller step

sizes may provide more accurate results for rapidly varying fields, at the cost of increased sensitivity
to floating-point error.

Value

A named numeric vector of length three containing the curl components at the evaluation point. The
components are named omega_x, omega_y and omega_z.

Examples

Simple rotating field: curl is constant in the third component
fieldl <- function(x, y, z) c(-y, x, 0.6)
curl3d(fieldl, x = 0.1, y = -0.3, z = 2)

Time-dependent example (time does not affect the curl):
field2 <- function(x, y, z, t) c(-y, x + t, z)
curl3d(field2, x =1, y =2, z = 3, tval = 5)

Using a smaller step size for more precision:
curl3d(fieldl, x =1, y =1, z =1, h = 1e-5)

curvature_torsion3d Curvature and torsion of a 3D parametric curve

Description

Computes numerical curvature and torsion of a three-dimensional parametric curve at a specific
value of the parameter. The curve is described by three functions that give the coordinate compo-
nents. All derivatives are approximated using centered finite differences of first, second and third
order.

Usage

curvature_torsion3d(

to,

h = 1e-04,
plot = FALSE,
window = 1
n_samples

200,

curvature_torsion3d 13

line = list(color = "red”, width = 2, dash = "solid"),

point = list(color = "black”, size = 5, symbol = "circle"),

scene = list(aspectmode = "data”, xaxis = list(title = "x(t)"), yaxis = list(title =
"y(t)"), zaxis = list(title = "z(t)")),

bg = list(paper = "white”, plot = "white"),

tol = 1e-10
)
Arguments

X, Y, Z Functions of t returning the three coordinate components of the parametric
curve.

to Value of the parameter at which curvature and torsion are evaluated.

h Step size for the finite-difference approximations. Smaller values give more
accuracy but may amplify numerical noise.

plot Logical; if TRUE, displays a 3D plot of a short segment of the curve around the
evaluation point.

window Length of the parameter interval shown when plot = TRUE. The interval is cen-
tered at to.

n_samples Number of points used to draw the curve segment in the 3D plot.

line A list defining the visual style of the curve in the 3D plot.

point A list defining the visual style of the marker placed at the evaluation point.

scene A list with 3D axis settings for plotly.

bg Background colors for the plotly figure.

tol Numeric tolerance used to detect degenerate situations in which curvature or
torsion cannot be reliably computed.

Details

The curvature at the evaluation point measures how sharply the curve bends at that location. It is
computed from the first and second derivative vectors. The torsion measures how the curve deviates
from being planar and is computed from the first, second and third derivative vectors. If the first
derivative vector is nearly zero, or if the first and second derivative vectors are nearly parallel, the
torsion becomes undefined; in such cases the function returns NA and provides a diagnostic message.

Optionally, the function can display a small segment of the curve around the evaluation point using
plotly. The point where the curvature and torsion are computed is highlighted in the 3D plot.

Value
A list with:

* kappa: numerical curvature at the evaluation point.

 tau: numerical torsion at the evaluation point, or NA if the computation is unstable.
* t0@: the parameter value where the evaluation was made.

* point: a numeric vector containing the coordinates of the curve at t@.

* r1, r2, r3: numeric approximations to the first, second and third derivative vectors at t@.

14

Examples

Example curve

X <- function(t) t*2 x cos(t)

Y <- function(t) t*3 * sin(3 * t)

Z <- function(t) t

res <- curvature_torsion3d(X, Y, Z, t@0 = pi)

curve_sample3d

res$kappa

res$tau

\donttest{ if (requireNamespace("plotly”, quietly = TRUE)) {

curvature_torsion3d(

X, Y, Z, t0 = pi, plot = TRUE,

window = 1.0, n_samples = 200,

line = list(color = "red”, width = 2),

point = list(color = "black"”, size = 5, symbol = "circle")

)

#313

curve_sample3d Sample a 3D parametric curve

Description

Generates a tibble with columns t, x, y, z by evaluating the parametric curve (X (t), Y (¢), Z(¢))

on the interval [a, b] at a given number of sample points.

Usage

curve_sample3d(X, Y, Z, a, b, n_samples = 400)

Arguments
X, Y,Z Functions of one variable t, e.g. function(t) 2 * cos(t).
a,b Numeric parameter limits for t.
n_samples Integer. Number of sample points along the curve.

Value

A tibble with columns t, x, y, z, where x = X(t), y = Y(t), z=Z(t).

See Also

plot_curve3d(), arc_length3d()

cylindrical_surface3d 15

Examples

X <- function(t) 2 * cos(t)

Y <- function(t) 3 * sin(t)

Z <- function(t) t / 5

curve_sample3d(X, Y, Z, @, 2 * pi, n_samples = 100)

cylindrical_surface3d Ruled surface along a 3D parametric curve

Description

Constructs a ruled surface generated by a three-dimensional parametric curve and a chosen direction
field. At each sampled point on the curve, a straight segment is extended in a specified direction,
producing a surface composed of line elements. Optionally, the resulting surface can be visualized
using plotly.

Usage
cylindrical_surface3d(
X,
Y,
z,
a,
b,
s_range,
dir,
n_t = 200,
n_s = 60,
plot = FALSE,
surface_colorscale = "Blues”,

surface_opacity = .35,

show_surface_grid = TRUE,

surface_grid_color = "rgba(60,80,200,0.25)",
surface_grid_width = 1,

show_curve = TRUE,

curve_line = list(color = "red"”, width = 2, dash = "solid"),
show_edge_a = TRUE,
show_edge_b = FALSE,

2, dash = "solid"),

edge_line = list(color = "blue”, width

show_rulings = TRUE,

rulings_count = 12,

rulings_at = NULL,

rulings_line = list(color = "black"”, width = 1, dash = "solid"),

show_axis_grid = FALSE,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

16 cylindrical_surface3d

bg = list(paper = "white”, plot = "white"),
lighting = list(ambient = 1, diffuse = 0.15, specular = @, roughness = 1, fresnel = 0)
)

Arguments

X, Y, Z Functions of one variable t returning the coordinate components of the base
curve.

a, b Numeric values giving the endpoints of the parameter interval.

s_range Numeric vector of length two giving the lower and upper bounds for the ruling
parameter.

dir Numeric vector of length three c(ux, uy, uz) giving the ruling direction. It will
be normalized internally.

n_t,n_s Integers giving the sampling resolution along the t and s directions.

plot Logical; if TRUE, displays the ruled surface using plotly.

surface_colorscale
Character string or vector specifying the colorscale used for the surface.

surface_opacity
Numeric value between 0 and 1 controlling the opacity of the surface.

show_surface_grid
Logical; if TRUE, draws grid lines on the surface.

surface_grid_color
Color for the surface grid lines.

surface_grid_width
Numeric width for the grid lines.

show_curve Logical; if TRUE, overlays the generating curve.

curve_line List of plotly style options for the curve.
show_edge_a, show_edge_b

Logical; if TRUE, draws the boundary edges at the extremes of the ruling param-
eter.

edge_line List of plotly style options for boundary edges.
show_rulings Logical; if TRUE, draws a subset of rulings on the surface.
rulings_count Integer giving the number of rulings to draw when rulings_at is not provided.

rulings_at Optional numeric vector giving the parameter values at which rulings should be
displayed.

rulings_line List of plotly style options for displayed rulings.

show_axis_grid Logical; if TRUE, shows axis gridlines in the 3D scene.

scene Optional list with 3D scene settings for plotly.

bg Optional list with background color settings for the figure.
lighting Optional list with lighting parameters for surface shading in plotly.

directional_derivative3d 17

Details

The function samples the base curve at n_t parameter values and, for each sampled point, gener-
ates a set of points along a line segment determined by the ruling parameter. These segments are
interpolated over the interval specified in s_range.

In this implementation, the ruling direction is given by a fixed three-dimensional vector dir. This
vector is normalized internally before constructing the surface.

If plot = TRUE, a 3D visualization is produced using plotly. The plot may include the ruled surface,
grid lines on the surface, boundary edges corresponding to the extremes of the ruling parameter,
and a selection of rulings. The generating curve can also be displayed.

Value
A list with:

* t_seq, s_seq: parameter grids used to build the mesh,

e Xmat, Ymat, Zmat: matrices of coordinates for the ruled surface,

 curve: data frame with the sampled generating curve,

* edge_a, edge_b: data frames for boundary edges (possibly NULL if not requested),

* u_hat: normalized ruling direction vector.

Examples

X <- function(t) cos(t)

Y <- function(t) sin(t)

Z <- function(t) 0.3 x t

dir_vec <- c(0, o, 1)

rs <- cylindrical_surface3d(
X, Y, Z,
a=0, b=2%pi,
s_range = c(-0.2, 0.2),
dir = dir_vec,
n_t = 100, n_s = 40,
plot = FALSE

directional_derivative3d

Directional derivative in any dimension, with optional 2D visualiza-
tion

Description

Computes a numerical directional derivative of a multivariate function at a given point, along a
specified direction. The derivative is approximated using centered finite differences. If the dimen-
sion is two and plot = TRUE, the function displays a local visualization of the surface defined by z
= f(x, y), including the evaluation point, the direction, and the curve traced along that direction.

18 directional_derivative3d

Usage
directional_derivative3d(
f,
X0,
v)
h = 1e-06,
plot = FALSE,

X_window = 2,
y_window = 2,

n_s = 180,

n_r = 50,

show_strip = TRUE,
strip_colorscale = "Blues”,

strip_opacity = 0.3,

show_surface_grid = TRUE,

surface_grid_color = "rgha(60,80,200,0.25)",

surface_grid_width = 1,

curve_line = list(color = "red”, width = 1),

point_marker = list(color = "black”, size = 3, symbol = "circle"),

u_line = list(color = "black”, width = 1),

w_line = list(color = "black”, width = 0.5),

t_range = c(-2, 2),

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white"”, plot = "white"),

tol = Te-12
)
Arguments

f A function returning a numeric scalar. It may be defined either as f(x, y, ...)
with several numeric arguments, or as a function of a numeric vector, f (x_vec).

X0 Numeric vector giving the evaluation point. Its length determines the dimension
of the problem.

v Numeric vector giving the direction along which the directional derivative is
computed. Must be nonzero and have the same length as x@.

h Numeric step size used for centered finite-difference approximations.

plot Logical; if TRUE and length(x@) == 2, displays a 3D visualization of the local

surface using plotly.

X_window, y_window
Numeric half-widths defining the size of the rectangular window around the
evaluation point in the 2D case.

n_s Integer giving the number of samples along the direction line in the 2D visual-
ization.
n_r Integer giving the number of samples across the strip in the 2D visualization.

show_strip Logical; if TRUE, draws a surface strip around the evaluation point.

directional_derivative3d 19

strip_colorscale

Character string specifying a plotly colorscale for the strip.

strip_opacity Numeric value between 0 and 1 determining the opacity of the strip.
show_surface_grid

Logical; if TRUE, overlays a grid onto the surface strip.

surface_grid_color

Character string giving the grid line color.

surface_grid_width

Numeric value giving the grid line width.

curve_line, point_marker, u_line,w_line

t_range

scene, bg
tol

Details

Lists with plotly style options for the directional curve, evaluation point, and
auxiliary lines.

Numeric vector of length two giving the parameter range for the directional
curve in the 2D visualization.

Lists specifying 3D scene and background options when plotting.

Numeric tolerance used for detecting numerical degeneracies.

The function accepts two types of input for the function f:

* a function of several numeric arguments, for example f(x, y, z, ...),or

* a function that takes a single numeric vector, such as f(x_vec).

At the evaluation point x0, the function:

¢ normalizes the direction vector v to obtain a unit direction,

» computes forward and backward perturbations along this unit direction,

* evaluates the function at those perturbed points,

* estimates the directional derivative using a centered finite-difference formula.

In two dimensions, if plot = TRUE, the function builds a small rectangular window around x@ and
evaluates the function over a fine grid to produce a strip of the surface. It then overlays:

* the base point,

* the selected direction,

* the trajectory of the directional curve,

* (optionally) a surface grid and other plot elements.

Value

A list containing:

D The directional derivative at x@ along the normalized direction.

v_hat The normalized direction vector.

fx, fy Centered partial derivatives in two dimensions (only returned when length(x0) == 2).

fig A plotly visualization when plot = TRUE, otherwise NULL.

20 divergence_field

Examples

General n-dimensional usage:
f3 <~ function(x, y, z) x"2 + y*2 + z
directional_derivative3d(f3, x@ = c(1, 0, @), v = c(1, 1, @))

Two-dimensional example without plotting (fast, no plotly required):
f2 <- function(x, y) x*2 + y*2
directional_derivative3d(f2, x0 = c(@, @), v = c(1, 2), plot = FALSE)

divergence_field Numerical divergence of a vector field

Description
Computes the divergence of a vector field at a given point using central finite differences. The
vector field field must take a numeric vector x and return a numeric vector of the same length.
Usage
divergence_field(field, x@, h = NULL, plot = FALSE)

Arguments
field Function of the form field(x) returning a numeric vector of the same length as
X.
X0 Numeric vector giving the evaluation point.
h Step size for finite differences. Can be:
* NULL: an automatic step is selected as 1e-4 * (1 + abs(x0));
* A numeric scalar: same step for all components;
* A numeric vector of the same length as x@.
plot Logical; if TRUE and the dimension is 2 or 3, a basic visualization is drawn with
plotly.
Details

Optionally, if the dimension is 2 or 3 and plot = TRUE, a simple visualization is produced using
plotly.
Value

A numeric scalar: the divergence evaluated at x@.

Examples

field <- function(x) c(x[1] + x[2], x[2] - x[11)
divergence_field(field, c(0.5, -0.2))

frenet_frame3d 21

frenet_frame3d Frenet-Serret frame for a 3D parametric curve

Description

Computes the Frenet-Serret frame, that is, the tangent, normal and binormal vectors of a three
dimensional parametric curve at selected values of the parameter. The frame is obtained from
numerical approximations of the first and second derivatives of the curve. Optionally, the curve and
the three vector fields can be displayed in a 3D interactive visualization using plotly.

Usage

frenet_frame3d(
X,

Y,

Z,

a,

b,

t_points,

h = 1e-04,

plot = FALSE,

n_samples = 400,

vec_scale = NULL,

curve_line = list(color = "blue”", width = 2, dash = "solid"),

T_line = list(color = "red"”, width = 4, dash = "solid"),

N_line = list(color = "green", width = 4, dash = "solid"),

B_line = list(color "black”, width = 4, dash = "solid"),

show_curve = TRUE,

show_points = TRUE,

point_marker = list(color = "blue", size = 3, symbol = "circle"),

scene = list(aspectmode = "data”, xaxis = list(title = "x(t)"), yaxis = list(title =
"y(t)"), zaxis = list(title = "z(t)")),

bg = list(paper = "white”, plot = "white"),

tol = 1e-10
)
Arguments
X Function returning the x coordinate of the curve as a function of the parameter
t.
Y Function returning the y coordinate of the curve.
Z Function returning the z coordinate of the curve.
a Lower endpoint of the parameter interval.
b Upper endpoint of the parameter interval.
t_points Numeric vector with the parameter values where the frame is computed and

optionally plotted.

22

h
plot

n_samples

vec_scale

curve_line
T_line
N_line
B_line
show_curve
show_points
point_marker
scene

bg

tol

Details

frenet_frame3d

Step size for centered finite difference approximations.

Logical; if TRUE, shows a 3D plotly visualization of the curve together with the
three vector fields.

Number of points used to sample the curve for plotting.

Base scaling factor for the vector segments. If NULL, it is estimated from the
overall size of the sampled curve.

Style options for drawing the base curve.

Style options for tangent vector segments.

Style options for normal vector segments.

Style options for binormal vector segments.

Logical; if TRUE, the base curve appears in the plot.

Logical; if TRUE, the evaluation points are marked on the curve.
Plotly marker style for the evaluation points.

Plotly 3D scene configuration.

Background settings for the plotly figure.

Numeric tolerance used to detect degenerate derivative situations.

At each parameter value in t_points, the function:

» computes finite difference approximations of the first and second derivatives of the curve,

* normalizes the first derivative to obtain the unit tangent direction,

* uses the first and second derivatives to construct a principal normal direction,

* constructs the binormal direction as a unit vector orthogonal to both the tangent and the nor-

mal,

* evaluates a numerical estimate of the curvature using the same derivative information.

If the derivative information is too small or nearly degenerate (for example, when the tangent direc-
tion cannot be reliably obtained), some components of the frame may be set to NA. The tolerance
parameter tol controls how these situations are detected.

When plot = TRUE, the function displays:

* asampled representation of the curve,

* the evaluation points,

* short line segments indicating the tangent, normal and binormal directions at each evaluation

point.

All visual elements can be styled or shown selectively through the corresponding arguments.

gradient_direction2d 23

Value
A tibble containing the parameter values and the coordinates of:

* the point on the curve,
* the tangent vector,

¢ the normal vector,

e the binormal vector,

¢ a numerical estimate of the curvature.

Columns are named t, x, y, z, Tx, Ty, Tz, Nx, Ny, Nz, Bx, By, Bz, kappa.

Examples

X <- function(t) txcos(t)
Y <- function(t) t*sin(3xt)
Z <- function(t) t
frenet_frame3d(
X, Y, Z, a=0, b =2xpi,
t_points = c(pi/3, pi, 5*pi/3)
)

gradient_direction2d Animate gradient and directional derivative on level curves (2D)

Description

Produces a Plotly animation showing level curves of a scalar field together with the gradient direc-
tion at a point and a rotating unit direction vector. The directional derivative value is displayed on
screen for each frame. A highlight is shown when the rotating direction aligns with the gradient,
which corresponds to the maximum directional derivative.

Usage

gradient_direction2d(
f}
X0,
yo,
xlim,
ylim,
n_grid = 7oL,
theta_vals = NULL,
h = 1e-04,
arrow_scale = NULL,
frame_ms = 220L,
transition_ms = 220L,
title = NULL,

gradient_direction2d

safe_mode = TRUE,
align_tol = 0.08

)
Arguments

f Function. A real-valued function f(x,y). It must accept two numeric arguments
and return numeric values.

X0 Numeric scalar. x-coordinate of the base point.

yo Numeric scalar. y-coordinate of the base point.

x1lim Numeric vector of length 2. Range for x in the contour plot.

ylim Numeric vector of length 2. Range for y in the contour plot.

n_grid Integer. Grid size per axis for the contour computation.

theta_vals Numeric vector. Angles (radians) used as frames. If NULL, a default sequence
from O to 2*pi is used.

h Numeric scalar. Step size for central differences.

arrow_scale Numeric scalar. Scale factor for drawing arrows. If NULL, an automatic scale
based on the plot window is used.

frame_ms Integer. Frame duration in milliseconds.

transition_ms Integer. Transition duration in milliseconds.
title Character. Plot title. If NULL, a default title is used.

safe_mode Logical. If TRUE, use calmer animation defaults intended to reduce flicker and
visual stress.

align_tol Numeric scalar. Angular tolerance (radians) used to decide when the rotating
direction is considered aligned with the gradient.

Details

The scalar field is
z=f(z,y).
At the point
(20, Y0)s
the gradient vector is
V f(xo,y0) = (gi(ﬂfo,yo% g]yc(l’myo)) :

For a unit direction
u(f) = (cosf,sinb),

the directional derivative is
Dy f(xo0,y0) = V f(x0,%0) - u(f).

The maximum value over unit directions is

IlIll;l‘fi:Xl Duf(l‘()a yO) = ||Vf($07y0)”a

gradient_scalar

25

and it occurs when

u(0)

points in the same direction as

V f(zo,0)-

Partial derivatives are approximated numerically by central differences.

Value

A plotly object (htmlwidget) with animation frames.

Examples

library(plotly)

f <- function(x, y) x*2 + 2xy*2
gradient_direction2d(

f=f,
X0 = 0.6,
yo = 0.4,
xlim = ¢(-1.5, 1.5),
ylim = c¢(-1.5, 1.5),
safe_mode = TRUE,
align_tol = 0.06
)
gradient_scalar Gradient of a scalar field in R™n
Description

Computes a numerical approximation of the gradient of a scalar function at a given point using
central finite differences. The function f is assumed to take a numeric vector as input and return a

scalar.

Usage

gradient_scalar(f, x@, h = NULL, plot = FALSE)

Arguments
.F

X0
h

Function of a numeric vector f (x) returning a numeric scalar.
Numeric vector giving the evaluation point.
Numeric step size for finite differences. Can be:

e NULL (default): a step is chosen as 1e-4 x (1 + abs(x@)) for each compo-
nent;

26 integrate_double_polar

* A scalar, used for all components;

* A numeric vector of the same length as x@.

plot Logical; if TRUE and 1length(x®@) is 2 or 3, draws the gradient vector with plotly.

Details

Optionally, if the input point has length 2 or 3 and plot = TRUE, a simple visualization of the gradi-
ent vector is produced using plotly.

Value

A numeric vector of the same length as x@ with the components of the gradient.

Examples

f <- function(v) exp(-(v[11%2 + v[2]*2)) + 0.3 * sin(2 * v[1] * v[2])
gradient_scalar(f, c(0.6, -0.4))

integrate_double_polar
Numerical Double Integration in Polar Coordinates

Description

Calculates the definite double integral of a function f(x, y) over a polar region R, defined by constant
limits for theta and functional limits for the radius r, R: g1(theta) <= r <= g2(theta), alpha <=
theta <= beta. The integration order used is r dr dtheta. Uses the Composite Simpson’s Rule for
numerical approximation.

Usage

integrate_double_polar(
f,
theta_min,
theta_max,
r_limit1,
r_limit2,
n_theta = 100,
n_r = 100,
plot_domain = TRUE

integrate_double_xy

Arguments

.F

theta_min
theta_max
r_limiti
r_limit2

n_theta

plot_domain

Value

A list containing:

27

A function R of two variables, f(x, y), returning a numeric value (the original
integrand).

The constant lower limit for the outer integral (alpha).

The constant upper limit for the outer integral (beta).

A function R of one variable defining the inner integral’s lower limit (r = g1(theta)).
A function R of one variable defining the inner integral’s upper limit (r = g2(theta)).

Number of subintervals for the outer integration (theta). Must be even. Default
is 100.

Number of subintervals for the inner integration (r). Must be even. Default is
100.

Logical. If TRUE, generates a ggplot2 plot of the integration domain in the
Cartesian plane. Default is TRUE.

e integral_value: The calculated approximation of the integral.

* domain_plot: The ggplot2 object representing the domain (if plot_domain = TRUE).

integrate_double_xy

Unified Numerical Double Integration

Description

Calculates the definite double integral of a function f(x, y) over a general region D, which can be
defined as Type I (dy dx) or Type II (dx dy). Uses the Composite Simpson’s Rule for numerical

approximation.

Usage

integrate_double_xy(

f,
const_min,
const_max,
limit1,
limit2,

region_type = "typel”,
n_outer = 100,
n_inner = 100,
plot_domain = TRUE

28

Arguments

.F
const_min
const_max

limit1

limit2

region_type

n_outer
n_inner

plot_domain

Value

A list containing:

integrate_triple_general

A function in R of two variables, f(x, y), returning a numeric value.
The constant lower limit of the outer integration (a for Type I, ¢ for Type II).
The constant upper limit of the outer integration (b for Type I, d for Type II).

A function in R of one variable defining the inner integral’s lower limit (h1(x)
or hl(y)).

A function in R of one variable defining the inner integral’s upper limit (h2(x)
or h2(y)).

A string specifying the region type: "typel" (dy dx) or "type2" (dx dy). Default
is "typel".

Number of subintervals for the outer integration. Must be even. Default is 100.
Number of subintervals for the inner integration. Must be even. Default is 100.

Logical. If TRUE, generates a ggplot2 plot of the integration domain. Default
is TRUE.

* integral_value: The calculated approximation of the integral.

* domain_plot: The ggplot2 object representing the domain (if plot_domain = TRUE).

integrate_triple_

general
Numerical Triple Integration over a General Region

Description

Calculates the definite triple integral of a function f(x, y, z) over a general region W defined by the
order dz dy dx. The region W is defined by constant limits for the outer integral (x), functional
limits depending on x for the middle integral (y), and functional limits depending on both x and y
for the inner integral (z). Uses the Composite Simpson’s Rule for numerical approximation.

Usage

integrate_triple_general(

f,

X_min,

X_max,
y_limit1,
y_limit2,
z_limit1,
z_limit2,
n_outer = 50,

lagrange_check

29

n_middle = 50,

n_inner = 50,

plot_xy_domain = TRUE

)

Arguments

.F
X_min
X_max

y_limit1

y_limit2

z_limit1

z_limit2

n_outer

n_middle

n_inner

plot_xy_domain

Value

A list containing:

A function in R of three variables, f(x, y, z), returning a numeric value.
The constant lower limit for the outermost integral (x = a).
The constant upper limit for the outermost integral (x = b).

A function in R of one variable defining the middle integral’s lower limit (y =
h1(x)).

A function in R of one variable defining the middle integral’s upper limit (y =
h2(x)).

A function in R of two variables defining the inner integral’s lower limit (z =
gl(x, y)).

A function in R of two variables defining the inner integral’s upper limit (z =
g2(x, y)).

Number of subintervals for the outermost integral (x). Must be even. Default is
50.

Number of subintervals for the middle integral (y). Must be even. Default is 50.

Number of subintervals for the innermost integral (z). Must be even. Default is
50.

Logical. If TRUE, generates a ggplot2 plot of the projection of the domain W
onto the xy-plane. Default is TRUE.

* integral_value: The calculated approximation of the integral.

* domain_plot: The ggplot2 object representing the xy-projection domain (if plot_xy_domain

= TRUE).

lagrange_check

Optimality check with Lagrange multipliers and bordered Hessian

Description

Evaluates first- and second-order optimality conditions for a smooth constrained optimization prob-
lem with equality constraints at a given candidate point. The function checks the Lagrange condi-
tions, builds the bordered Hessian, and classifies the candidate as a minimum, maximum or inde-
terminate/saddle according to the signs of the leading principal minors.

30

Usage

lagrange_check

lagrange_check(f, g, x, h = NULL, tol = 1e-06)

Arguments

.F

tol

Details

Objective function. It must be function(x) and return a single numeric value.
The argument x is a numeric vector of length n.

Equality constraints. Either a single function function(x) returning a numeric
vector of length m, or a list of scalar functions function(x), one per constraint.

Numeric vector giving the candidate point at which the optimality conditions
are evaluated.

Step size for finite differences. It can be:
* asingle numeric value used for all coordinates,

* anumeric vector of length n with one step per coordinate,

 or NULL, in which case step sizes are chosen as 1Te-4 * (1 + abs(x)) com-
ponentwise.

Numeric tolerance used to judge feasibility of the constraints, the effective rank
of the Jacobian, near singularity of matrices and very small principal minors.

Consider a problem of minimizing or maximizing a scalar function f (x) subject to m equality con-
straints collected in g(x) = @, where x is a vector in R”n and g(x) is a vector in R"m.

At the candidate point x, the function:

Approximates the gradient of f and the gradients of each constraint using second-order central
finite differences.

Builds the Jacobian matrix J of the constraints (rows are gradients of each constraint).

Approximates the Hessian matrix of f and the Hessian of each constraint, also by central finite

Forms the Hessian of the Lagrangian by combining the Hessian of f and the Hessians of the
constraints with the Lagrange multipliers.

Builds the bordered Hessian matrix using the Jacobian and the Hessian of the Lagrangian.

Computes leading principal minors of the bordered Hessian and uses their signs to classify the

The classification is based on the standard bordered Hessian test: after multiplying each leading
principal minor by (-1)*m, if all resulting values are positive the point is classified as a minimum; if
their signs alternate (negative, positive, negative, and so on), the point is classified as a maximum.
In any other case, the result is reported as indeterminate. All derivatives (gradients and Hessians)
are computed numerically with central finite differences of second order. The step sizes can be
given explicitly or chosen automatically from the scale of the point x.

lagrange_check 31

Value

A list with components:

* ok_stationarity: numeric value of the norm of the stationarity residual. When constraints
are present, this measures how close the gradient of f is to the linear combination given by the
Jacobian transpose and the Lagrange multipliers.

* ok_feasible: maximum absolute value of the constraint vector g(x) at the candidate point.
* lambda: numeric vector of length m with the Lagrange multipliers.

¢ J: Jacobian matrix of the constraints at x, with dimension m x n.

* H_f: Hessian matrix of the objective function at x, of size n x n.

* H_g: list of Hessian matrices corresponding to each constraint function, each of size n x n.

* H_L: Hessian matrix of the Lagrangian at x.

* B: bordered Hessian matrix, of size (m + n) x (m + n) when constraints are present.

* minors: data.frame with one row per leading principal minor. It contains the order of the
minor, its signed value and the logarithm of the absolute determinant used in the computation.

* clasificacion: character value equal to "minimo”, "maximo” or "indeterminado”, accord-
ing to the bordered Hessian criterion.

* notas: character vector with diagnostic messages about the rank of the Jacobian, near singu-
larity of matrices or any numerical issues detected.

Examples

1) Minimum with one constraint:

#it f(x,y) = x*2 + y*2, g(x,y) =x+y-1=0 -> (0.5, 0.5)
f1 <= function(x) x[1]1%2 + x[2]*2

gl <- function(x) x[1] + x[2] - 1

lagrange_check(f1, g1, x = c(0.5, 0.5))

2) Maximum with one constraint:

#it f(x,y) = -(x*2 + y*2), g(x,y) =x+y-1=0 -> (0.5, 0.5)
f2 <- function(x) -(x[11*2 + x[2]*2)

lagrange_check(f2, g1, x = c(0.5, 0.5))

3) Two constraints in R*3 (minimum norm with two planes)
3 <- function(x) sum(x*2)
g3 <- list(
function(x) x[1]1 + x[2] + x[3] - 1,
function(x) x[1] - x[3]
)
Candidate solution: x1 = x3, 2*x1 + x2 =1 -> x = (1/3, 1/3, 1/3)
lagrange_check(f3, g3, x = c(1, 1, 1) / 3)

32 line_integral2d

line_integral2d Line integral of a scalar field along a planar curve, with optional 3D
visualization

Description

Computes a numerical line integral of a scalar field along a parametric curve in the plane. The func-
tion integrates the quantity f(r(t)) * speed(t), where r(t) is the parametric curve and speed(t)
is the length of its derivative. Optionally, it produces a 3D visualization that includes a surface repre-
senting z = f (x, y), the curve itself in the plane, a lifted version of the curve showing z = f(x(t),
y(t)), and a vertical curtain over the curve.

Usage

line_integral2d(

plot = TRUE,
n_curve = 400,
n_curtain_v = 40,

n_surf_x = 80,
n_surf_y = 80,
colorscale = "Viridis",

surface_opacity = 0.65,

show_surface_grid = TRUE,
surface_grid_color = "rgba(80,80,80,0.25)",
surface_grid_width = 1,

curtain = 0.4,

curtain_colorscale = c("white"”, "#2a9d8f"),
curve_color = "black”,

curve_width = 3,

lifted_color = "red",

lifted_width = 2,
h = NULL,
method = c("adaptive”, "simpson"),

n_simpson = 1000,
scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),
bg = list(paper = "white”, plot = "white")
)

Arguments

f A scalar field, given as function(x, y) returning a numeric value.

line_integral2d 33

r A parametric curve, given as function(t) that returns a numeric vector of
length two, interpreted as c(x, y).

a,b Numeric scalars giving the parameter limits, with b > a.

plot Logical; if TRUE, produces a visualization using plotly.

n_curve Number of sample points along the curve for plotting.

n_curtain_v Number of subdivisions in the vertical direction for the curtain.

n_surf_x, n_surf_y
Grid resolution for sampling the surface z = f(x, y).
colorscale Color scale for the surface. It may be a plotly scale name, a single color, or a
vector of colors defining a gradient.
surface_opacity
Numeric opacity for the surface, between 0 and 1.
show_surface_grid
Logical; if TRUE, overlays grid lines on the surface.
surface_grid_color
Character string giving the color of surface grid lines.
surface_grid_width
Numeric width of surface grid lines.
curtain Numeric value between 0 and 1 giving the opacity of the vertical curtain. A

value of zero disables the curtain.
curtain_colorscale

Color scale for the curtain, using the same formats accepted by colorscale.
curve_color Color for the curve drawn at height zero.
curve_width Width of the curve drawn at height zero.
lifted_color Color for the lifted curve whose height is f(x(t), y(t)).
lifted_width Width of the lifted curve.

h Step size used for centered finite differences when computing the derivative of
r(t). If NULL, a default is chosen automatically.

method Integration method; may be "adaptive” (using stats::integrate)or "simpson”
(using a composite Simpson rule).

n_simpson Number of subintervals for the Simpson method. This value is automatically
adjusted to be even.

scene List configuring the 3D scene in plotly.

bg List with background color settings for the figure, with entries such as paper
and plot.

Details

The function evaluates the scalar field along the curve and computes an approximation of the deriva-
tive of r(t) using centered finite differences. The integral can be computed either through a built-in
adaptive integration routine or via a composite Simpson rule with a user specified number of subin-
tervals.

For visualization, the function:

34 line_integral3d_work

* builds a rectangular surface z = f(x, y) using only the endpoints of the curve,
* plots the curve in the plane,
* plots a lifted copy of the curve where the height is given by the scalar field,

* optionally constructs a vertical curtain over the curve by extruding the height values.

Value
A list with:
* value: the numeric value of the line integral,
» fig: a plotly figure when plot = TRUE, or NULL otherwise.
Examples

f <- function(x, y) x*2 + y*2
r <- function(t) c(t*cos(t), txsin(3*t))
line_integral2d(f, r, a = @, b = 2%pi, plot = FALSE)

line_integral3d_work 3D line integral with work visualization

Description

Compute a numerical approximation of the line integral of a vector field along a parametric space
curve and optionally draw a three dimensional visualization of the curve together with arrows of the
field.

Usage

line_integral3d_work(
field,
r!
a,
b,
plot = TRUE,
n_curve = 600,
n_field = 7,
field_ranges = NULL,
pad = 0.15,
arrows = c("both”, "line"”, "cone”, "none"),

arrow_scale = 0.1,
normalize_bias = 1,
scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),
bg = list(paper = "white"”, plot = "white")
)

line_integral3d_work

Arguments

field

plot

n_curve

n_field

field_ranges

pad

arrows

arrow_scale

normalize_bias

scene

bg

Details

35

Function that represents the vector field. It must be a function of three or four
numeric arguments. In the three argument form the arguments are x, y and z. In
the four argument form the arguments are x, y, z and t. The function must return
a numeric vector of length three.

Function of one numeric argument t that returns a numeric vector c(x, y, z) of
length three with the coordinates of the curve.

Numeric scalar with the lower value of the parameter interval.

Numeric scalar with the upper value of the parameter interval. It must satisfy b
> a.

Logical value. If TRUE, a plotly object with the field arrows and the curve is
created.

Integer number of sampled points on the curve.

Integer number of grid points per axis for the field arrows. The total number of
arrows is n_field”3.

Optional list with named components x, y and z, each a numeric vector of length
two giving the range used to build the field grid. If NULL, the ranges are taken
from the bounding box of the curve and expanded by pad.

Numeric fraction used to expand the automatic field ranges.

Character string that selects which arrow style is drawn. One of "both”, "1ine”,
"cone” or "none”.

Numeric factor that controls the length of the arrows as a fraction of the size of
the domain.

Numeric value used to regularize the scaling of the field magnitude when com-
puting arrows.

List of plotly scene options passed to plotly: :layout().

List with two character elements named paper and plot that control the back-
ground colours in the plotly layout.

The parameter t runs from a to b. The curve r(t) must return a numeric vector of length three. The
field field(x, y, z) may optionally also depend on t through a fourth argument.

Value

A list with components:

 value: numeric value of the line integral (work).

» fig: plotly object when plot = TRUE, otherwise NULL.

» field_box: list with numeric ranges used for the field grid, with components x, y and z.

36 line_integral_vector2d

Examples

field <- function(x, y, z) c(-y, X, 0.2*xz)
r <- function(t) c(cos(t), sin(t), 0.25%t)
out <- line_integral3d_work(
field = field, r = r, a = 0, b = 2*pi,
plot = FALSE, n_curve = 200, n_field = 5
)

out$value

line_integral_vector2d
2D line integral of a vector field with visualization

Description

This function computes a numerical approximation of the line integral of a planar vector field along
a parametric curve r(t) on the interval from a to b. The derivative of the curve is approximated by
finite differences and the integral is evaluated either by an adaptive numerical integrator or by a
composite Simpson rule.

Usage
line_integral_vector2d(
field,
r,
a,
b,
plot = TRUE,
n_curve = 600,
grid_n = 15,
padding = 0.15,
h = NULL,
method = c("adaptive”, "simpson"),

n_simpson = 1000,

arrow_scale = 0.08,
normalize_bias = 1,

field_color = "rgba(0,0,0,0.55)",
field_width = 1.8,

traj_palette = "RdBu”,
traj_width = 5,
show_markers = FALSE,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),
bg = list(paper = "white"”, plot = "white")
)

line_integral_vector2d

Arguments

field

a
b
plot

n_curve
grid_n
padding

method
n_simpson
arrow_scale
normalize_bias

field_color
field_width
traj_palette

traj_width
show_markers
scene

bg

Details

37

Vector field in the plane. A function function(x, y) that returns a numeric
vector of length 2 c(Fx, Fy).

Parametric curve in the plane. A function function(t) that returns a numeric
vector of length 2 c(x, y).

Numeric scalar. Left endpoint of the parameter interval.
Numeric scalar. Right endpoint of the parameter interval. Must satisfy b > a.

Logical. If TRUE, an interactive plotly figure is created with the field and the
curve.

Integer. Number of parameter values used to sample the curve.
Integer. Number of grid points per axis used to draw the vector field arrows.

Numeric scalar. Relative margin added around the bounding box of the curve
when building the field grid.

Numeric scalar or NULL. Step size used in the finite difference approximation of
the derivative of the curve. If NULL, a small step is chosen automatically, based
on the length of the interval b - a.

Character string. Integration method for the line integral. One of "adaptive”
(uses stats::integrate) or "simpson” (composite Simpson rule).

Integer. Number of subintervals used when method = "simpson”. If it is odd, it
is increased by one internally.

Numeric scalar. Controls the overall length of the field arrows as a fraction of
the plot span.

Numeric scalar. Saturation parameter used to avoid extremely long arrows for
large field magnitudes.

Character string. Color used for the field arrows.
Numeric scalar. Line width for the field arrows.

Color scale used to represent the power along the trajectory. Passed to plotly as
a colorscale name.

Numeric scalar. Line width for the trajectory.
Logical. If TRUE, markers are drawn along the trajectory in addition to the line.

List with plotly scene options (axis titles, aspect mode, etc.) passed to plotly: : layout().

List with background colors for plotly, with components paper and plot.

Optionally, the function can build an interactive plotly figure that shows a grid of arrows for the
vector field and the curve colored by the local power field(r(t)) * r’(t).

Value

A list with components:

 value: numeric value of the line integral.

* samples: data frame with sampled points, velocities and power along the trajectory.

» fig: plotly object when plot = TRUE, otherwise NULL.

38

newton_raphson2d

Examples

Simple example:
field(x, y) = (y, -x), r(t) = (cos t, sin t), t in [0, 2*pi]
line_integral_vector2d(

field = function(x, y) c(y, -x),

r = function(t) c(cos(t), sin(t)),

a =0, b =2xpi, plot = FALSE

newton_raphson2d Newton-Raphson method for systems in R"2 with animation (Plotly)

Description

Applies the Newton-Raphson method to solve a nonlinear system in two variables:

F(z,y) =0,

Fe) = (fon)

Xn = (xnayn),

where

At an iterate

the Newton update is
Xn+1 = Xp — J<Xn)_1F(X’ﬂ>7

o1 (g 261 (g
Ty = (3;;(W) g yD

Oz (z,y) @(x,y

where the Jacobian matrix is

If a Jacobian function is not provided, partial derivatives are approximated numerically by central

differences.

Usage

newton_raphson2d(
f,
X0,
J = NULL,
h = 1e-04,
max_iter = 10L,
tol = 1e-08,
xlim = NULL,
ylim = NULL,
n_grid = 120L,
frame_ms = 700L,

newton_raphson2d

transition_ms
title = NULL,
TRUE

safe_mode =

)

Arguments

.F

x0
J

h
max_iter

tol

xLlim

ylim

n_grid
frame_ms
transition_ms
title

safe_mode

Details

39

= 450L,

Function. A function f(x,y) that returns a numeric vector of length 2: c(f1(x,y),
f2(x,y)).
Numeric vector of length 2. Initial guess c(x0, y0).

Optional function. A function J(x,y) returning a 2x2 numeric matrix (the Jaco-
bian). If NULL, a numerical Jacobian is used.

Numeric scalar. Step size for numerical partial derivatives (when J is NULL).
Integer. Maximum number of Newton iterations.

Numeric scalar. Stopping tolerance based on the infinity norm: max(If11,If2l) <=
tol.

Numeric vector of length 2. Plot range for x. If NULL, it is chosen from the
iterates.

Numeric vector of length 2. Plot range for y. If NULL, it is chosen from the
iterates.

Integer. Grid size per axis used to draw the zero level curves.
Integer. Frame duration in milliseconds.

Integer. Transition duration in milliseconds.

Character. Plot title. If NULL, a default title is used.

Logical. If TRUE, uses calmer animation defaults intended to reduce flicker and
visual stress.

The animation shows the two zero level curves

filz,y) =0 and fo(z,y) =0

together with the Newton iterates and the step segments

Value

Xp — Xn+1-

A list with components:

plot A plotly object (htmlwidget) with animation frames.

iterates Data frame of iterates (n, X, y, f1, f2, norm_inf).

root Numeric vector c(x, y) with the last iterate.

converged Logical. TRUE if convergence was detected within max_iter.

40 newton_raphson_anim

Examples

library(plotly)

Example system:

f1(x,y)=x"2+y*2-1 (unit circle)

f2(x,y)=x-y (line)

f <= function(x, y) c(x*2 + y*2 -1, x - y)

out <- newton_raphson2d(f, x@ = c(0.8, 0.2), max_iter = 8)
out$plot

out$iterates

out$converged

out$root

newton_raphson_anim Newton-Raphson root finding with tangent animation (Plotly)

Description

Builds a Plotly animation of the Newton-Raphson method for finding a root of a real function. Each
frame shows the tangent line at the current iterate and how its x-intercept defines the next iterate.

Usage
newton_raphson_anim(

f,
X0,
df = NULL,
h = 1e-04,
max_iter = 10L,
tol = 1e-08,
xlim = NULL,

n_curve = 600L,
frame_ms = 600L,
transition_ms = 400L,

title = NULL,
safe_mode = TRUE
)
Arguments
f Function. A real-valued function f(x). Must accept a numeric vector and return
a numeric vector of the same length.
X0 Numeric scalar. Initial guess.

df Optional function. Derivative f’(x). If NULL, a numerical derivative is used.

newton_raphson_anim

h
max_iter
tol

x1lim

n_curve
frame_ms
transition_ms
title

safe_mode

Details

41

Numeric scalar. Step size for numerical derivative (when df is NULL).
Integer. Maximum number of iterations.
Numeric scalar. Stopping tolerance based on If(x_n)l.

Numeric vector of length 2. Plot range for x. If NULL, it is chosen around the
iterates.

Integer. Number of points used to draw the curve.
Integer. Frame duration in milliseconds.

Integer. Transition duration in milliseconds.
Character. Plot title. If NULL, a default title is used.

Logical. If TRUE, use calmer animation defaults intended to reduce flicker and
visual stress.

The Newton-Raphson update is

f(xn)

Tn+l = Tn — f/(.’E)
n

If a derivative function is not provided, the derivative is approximated numerically by the central

difference

Value

fle+h) - flz—h)
2h '

f'(x) ~

A list with components:

plot A plotly object (htmlwidget) with animation frames.

iterates Data frame with iterations (n, x, fx, dfx).

root Last iterate (approximate root).

converged Logical. TRUE if convergence was detected within max_iter.

Examples

library(plotly)

f <- function(x)

X"3 - 2xx - 5

out <- newton_raphson_anim(f, x0 = 2)

out$plot
out$root

g <- function(x)

cos(x) - x

newton_raphson_anim(g, x0 = 1)

42 normal3d

normal3d Principal normal vectors along a 3D curve

Description

Computes numerical principal normal vectors of a three-dimensional parametric curve at several
parameter values. The curve is described by three coordinate functions X, Y and Z. At each evaluation
point, the function approximates the first and second derivatives of the curve, builds the unit tangent
and binormal vectors, and then obtains the principal normal as the unit vector orthogonal to both of
them.

Usage

normal3d(
X7

Y,

zZ,

a,

b,

t_points,

h = 1e-04,

plot = FALSE,

n_samples = 400,

vec_scale = NULL,

vec_factor = 1,

curve_line = list(color = "blue", width = 2, dash = "solid"),

N_line = list(color = "green", width = 5, dash = "solid"),

show_curve = TRUE,

show_points = TRUE,

point_marker = list(color = "black"”, size = 3, symbol = "circle"),

scene = list(aspectmode = "data”, xaxis = list(title = "x(t)"), yaxis = list(title =
"y(t)"), zaxis = list(title = "z(t)")),

bg = list(paper = "white”, plot = "white"),

tol = 1e-10
)
Arguments
X Function giving the x coordinate of the curve as a function of the parameter t.
Y Function giving the y coordinate of the curve as a function of the parameter t.
YA Function giving the z coordinate of the curve as a function of the parameter t.
a Lower endpoint of the parameter interval.
b Upper endpoint of the parameter interval.
t_points Numeric vector of parameter values at which the principal normal is evaluated

and, optionally, plotted.

normal3d

plot

n_samples

vec_scale

vec_factor

curve_line
N_line
show_curve
show_points
point_marker

scene

bg

tol

Details

43

Step size for the centered finite-difference approximations used to compute deriva-
tives.

Logical; if TRUE, displays a 3D plot of the curve and the corresponding normal
segments using plotly.

Number of points used to sample and draw the curve for plotting purposes.

Base length used for the normal segments. If NULL, it is estimated as a small
fraction of the overall size of the sampled curve.

Multiplicative factor applied to vec_scale to control the visual length of the
normal segments.

List with plotly style options for the base curve.

List with plotly style options for the normal segments.
Logical; if TRUE, the base curve is drawn.

Logical; if TRUE, the evaluation points are marked on the curve.
List with plotly marker options for the evaluation points.

List with 3D scene settings for plotly.

Background colors for the figure, given as a list with entries such as paper and
plot.

Numeric tolerance used to detect singular or nearly singular situations in which
the normal direction cannot be computed reliably.

For every parameter value in t_points, the function:

* approximates the first derivative of the curve with respect to the parameter,

* normalizes this derivative to obtain a unit tangent direction,

* uses the first and second derivative vectors to construct a direction orthogonal to the tangent
and interprets it as a binormal direction,

* builds the principal normal direction as a unit vector orthogonal to both the tangent and the

binormal.

When the curvature of the curve at a given parameter value is extremely small, the normal direction
becomes poorly defined from a numerical point of view. In such situations, the function marks the
corresponding components of the normal vector as NA.

Optionally, the function can display the curve and the associated normal segments in a 3D interac-
tive plot using plotly. The base curve, the evaluation points and the normal segments can be shown
or hidden independently.

Value

A tibble with columns t, X, y, z, Nx, Ny and Nz, where the last three columns contain the components
of the principal normal vector at each parameter value.

44 osculating_circle3d

Examples

X <- function(t) t*xcos(t)

Y <- function(t) t*sin(3*t)

Z <- function(t) t

normal3d(X, Y, Z, a = @, b = 2%pi, t_points = c(pi/3, pi, 5*pi/3))

osculating_circle3d Osculating discs and circles of a spatial curve

Description

For a three-dimensional parametric curve, this function constructs numerical approximations to the
osculating circles (and associated discs) at a set of parameter values. At each requested point on the
curve, it approximates the Frenet frame and the curvature, and then uses this information to define
the center and radius of the local osculating circle. Optionally, it can display these circles or discs
in an interactive 3D visualization using plotly.

Usage

osculating_circle3d(
X,

Y,

zZ,

a,

b,

t_points,

h = 1e-04,

plot = FALSE,

n_samples = 400,

fill = c("disk”, "ring"),

ru = 24,
rv =172,
colorscale = "Reds”,

opacity = 0.6,

ring_line = list(color = "red"”, width = 4, dash = "solid"),

show_curve = TRUE,

show_points = TRUE,

curve_line = list(color = "blue”, width = 2, dash = "solid"),

point_marker = list(color = "black”, size = 3, symbol = "circle"),

show_radius = FALSE,

radius_phase = 0,

radius_line = list(color = "orange”, width = 5, dash = "solid"),

scene = list(aspectmode = "data”, xaxis = list(title = "x(t)"), yaxis = list(title =
"y(t)"), zaxis = list(title = "z(t)")),

bg = list(paper = "white"”, plot = "white"),

lighting = list(ambient = 1, diffuse = @.15, specular = @, roughness = 1, fresnel = 0),

osculating_circle3d

tol = 1e-10

Arguments

XY, Z
a, b

t_points

h

plot
n_samples
fill

ru
rv
colorscale

opacity

ring_line

45

Functions of t returning the coordinate components of the curve.
Numeric endpoints of the parameter interval.

Numeric vector of parameter values at which osculating circles or discs are con-
structed.

Step size for centered finite-difference approximations.
Logical; if TRUE, creates a 3D visualization using plotly.
Number of sample points used to draw the base curve when show_curve = TRUE.

Character; either "disk"” for a filled surface or "ring” for the circumference
only.

Number of radial subdivisions when drawing a filled disc.
Number of angular subdivisions; also used as the number of points on each ring.
Character string giving the plotly colorscale used for the discs.

Numeric value between 0 and 1 controlling the opacity of the discs when fill
= "disk".

List with style options for the ring when fill = "ring”.

show_curve, show_points

Logical values indicating whether the base curve and the corresponding points
on the curve should be displayed.

curve_line, point_marker

show_radius

radius_phase

radius_line

scene

bg

lighting
tol

Details

Lists with plotly style options for the base curve and the points.

Logical; if TRUE, draws a radius segment from the center of each osculating
circle to its boundary.

Angle, in radians, that determines the direction of the displayed radius.
List with plotly style options for the radius segment.
List with 3D scene settings for the plotly figure.

List defining background colors for the figure, typically with entries paper and
plot.

List with lighting options for add_surface when fill = "disk".

Numeric tolerance used in derivative-based checks and to detect degenerate
cases in which curvature or frame vectors cannot be computed reliably.

For each parameter value in t_points, the function:

* evaluates the curve and approximates its first and second derivatives,

* constructs approximate tangent, normal and binormal directions,

¢ estimates the curvature from the derivative information,

46 osculating_ribbon3d

* defines the center of the osculating circle by moving from the curve point along the normal
direction by a distance equal to the reciprocal of the curvature,

* records the corresponding radius as that same reciprocal quantity.
Depending on the value of fill, the function either:

* builds a filled disc that lies in the osculating plane and is bounded by the osculating circle, or

 draws only the circumference corresponding to that circle.

A regular sampling of angles around the osculating circle is used to generate the discrete represen-
tation. For filled discs, radial subdivisions are added to obtain a surface mesh. The resulting objects
can be combined with a sampled version of the base curve and additional elements such as radius
segments.

Value

A list with two components:

data A tibble with columns t, x, y, z, kappa, cx, cy, cz, radius, Tx, Ty, Tz, Nx, Ny, Nz,
Bx, By, Bz, containing the parameter values, the curve coordinates, the numerical curvature,
the centers and radii of the osculating circles, and the associated Frenet frame vectors.

plot A plotly object when plot = TRUE, otherwise NULL.

Examples

X <- function(t) cos(t)

Y <- function(t) sin(t)

Z <- function(t) 0.2 x t

osculating_circle3d(
X, VY, Z,
a=0,b=6%npi,
t_points = c(pi, 2 * pi),

plot = FALSE
)
osculating_ribbon3d Osculating ribbon along a 3D parametric curve
Description

Constructs a narrow ribbon that follows a three-dimensional parametric curve. The ribbon is based
on the Frenet-Serret frame of the curve, computed numerically along a set of sample points. The
ribbon extends a small distance in the normal direction of the curve, producing a thin band that
helps visualize how the curve bends and twists in space.

osculating_ribbon3d 47

Usage

osculating_ribbon3d(
X,

Y,

Z,

a,

b,

h = 1e-04,

plot = FALSE,

n_t = 400,

n_u = 25,

u_max = 1,

colorscale = "Blues”,

opacity = 0.35,

show_curve = TRUE,

show_centers = TRUE,

curve_line = list(color = "black”, width

centers_line = list(color = "red”, width

show_surface_grid = TRUE,

surface_grid_color = "rgbha(60,80,200,0.25)",

surface_grid_width = 1,

show_axis_grid = FALSE,

scene = list(aspectmode = "data”, xaxis = list(title = "x(t)"), yaxis = list(title =
"y(t)"), zaxis = list(title = "z(t)")),

bg = list(paper = "white"”, plot = "white"),

lighting = list(ambient = 1, diffuse = @.15, specular = @, roughness = 1, fresnel = 0),

2),
2),

show_centers

curve_line

tol = 1e-10
)
Arguments
X, Y, Z Functions returning the coordinate components of the curve as functions of the
parameter t.
a, b Numeric values giving the endpoints of the parameter interval.
h Step size used in the finite-difference approximations.
plot Logical; if TRUE, produces a 3D visualization of the ribbon using plotly.
n_t Number of sample points along the curve.
n_u Number of subdivisions across the width of the ribbon.
u_max Half-width of the ribbon, measured in units of the normal direction.
colorscale Character string giving the plotly colorscale used for the ribbon surface.
opacity Numeric value between 0 and 1 controlling the transparency of the ribbon.
show_curve Logical; if TRUE, draws the base curve.

Logical; if TRUE, draws the centerline joining the midpoints of the ribbon cross-
sections.

List with plotly style options for the base curve.

48

osculating_ribbon3d

centers_line List with plotly style options for the centerline.

show_surface_grid
Logical; if TRUE, draws a grid on the surface of the ribbon.

surface_grid_color
Character string giving the color of the grid lines on the ribbon.

surface_grid_width
Numeric value giving the width of the surface grid lines.

show_axis_grid Logical; if TRUE, displays gridlines on the coordinate axes in the plotly scene.

scene List with 3D scene settings for the plotly figure.

bg List defining the background colors of the figure, typically with entries paper
and plot.

lighting List with lighting settings for the surface in plotly.

tol Numeric tolerance used to detect numerical instabilities when computing the

derivative-based frame vectors.

Details

The function samples the curve at n_t points and computes the numerical tangent, normal and bi-
normal directions using finite-difference approximations of the derivatives. At each sampled point,
a short segment is taken in the normal direction to define the width of the ribbon. These segments
are interpolated across the curve and subdivided according to n_u to produce a mesh that represents
the ribbon surface.

Optionally, the function can display the ribbon in an interactive 3D plot using plotly. The base
curve, the centerline, and optional grid lines on the ribbon surface can be shown or hidden indepen-
dently.

Value

A list with two components:

data A tibble containing the sampled parameter values, the coordinates of the curve, and the cor-
responding tangent, normal and binormal directions.

plot A plotly object if plot = TRUE, otherwise NULL.

Examples

X <- function(t) cos(t)
Y <- function(t) sin(t)
Z <- function(t) 0.2 x t
osculating_ribbon3d(X, Y, Z, a = @, b = 4xpi, plot = FALSE)

partial_derivatives_surface 49

partial_derivatives_surface
Partial derivatives of z = fix, y) at a point with 3D visualization

Description

Numerically approximates the partial derivatives f,(zo, o) and fy(2o,yo) of a scalar field z =
f(z,y) at a given point (x0, yo) using central finite differences.

Usage
partial_derivatives_surface(

f}

X0,

yo,

h = NULL,
xlim = NULL,
ylim = NULL,
nx = 60L,

ny = 60L,
plot = TRUE,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),
bg = list(paper = "white"”, plot = "white")

)
Arguments

f Function function(x, y) returning a numeric scalar f(x, y).

X0, yo Numeric scalars; coordinates of the point where the partial derivatives are eval-
uated.

h Numeric step for the central finite differences. If NULL, a default value is chosen
as Te-4 = (1 + max(abs(x@), abs(y0))).

xlim Numeric length-2 vector c(x_min, x_max). Range for the x-axis used to draw
the surface. If NULL, a symmetric window around x@ is used.

ylim Numeric length-2 vector c(y_min, y_max). Range for the y-axis used to draw
the surface. If NULL, a symmetric window around y®@ is used.

nx, ny Integer grid sizes (number of points) along x and y for the surface plot. Recom-
mended values are at least 20.

plot Logical; if TRUE, builds and returns a plotly surface plot. If FALSE, only the
numeric derivatives are returned.

scene List with plotly 3D scene options (axis titles, aspect mode, and so on) passed to

plotly::layout().
bg List with background colors for plotly, with components paper and plot.

50 plot_curve3d

Details

Optionally, it builds a 3D plotly surface for z = f(z,y) on a rectangular window around (g, o)
and overlays:

* the intersection curve of the surface with the plane y = yg and its tangent line given by
f x (l’ 0, ZJO),

* the intersection curve with the plane = x(and its tangent line given by f, (o, yo);

e the base point (zg, ¥, f (%0, ¥o))-

Value

A list with components:

* fx: numeric scalar, approximation of f,.(xo, o).
+ fy: numeric scalar, approximation of f, (o, yo).
* f0: numeric scalar, f(zq,yo).

» fig: a plotly object if plot = TRUE and plotly is available; otherwise NULL.

Examples

f <= function(x, y) x*2 + 3 * x * y - y*2
res <- partial_derivatives_surface(
f,
X0 =1, yo = -1,
xlim = c(-1, 3),
ylim = c(-3, 1),
nx = 60, ny = 60
)
res$fx
res$fy

plot_curve3d Plot a 3D parametric curve with plotly

Description

Creates an interactive 3D plot of a parametric curve given a tibble with columns t, x, y, z (typically
produced by curve_sample3d()).

plot_curve3d 51

Usage
plot_curve3d(
data,
mode = "lines”,

line = list(color = "blue"”, width = 3, dash = "solid"),

marker = NULL,

title = NULL,

scene = list(xaxis = list(title = "x(t)"), yaxis = list(title = "y(t)"), zaxis =
list(title = "z(t)")),

bg = list(paper = "white”, plot = "white")

)
Arguments
data Tibble with columns t, x, y, z.
mode Character string. Plotly trace mode, e.g. "lines” or "lines+markers”.
line List with line styling options, such as 1list(color = "blue”, width = 3, dash
= "solid").
marker Optional list with marker styling options, or NULL to omit markers.
title Optional character string for the plot title.
scene List specifying 3D axis titles and options, passed to plotly: :layout(), typi-
cally including xaxis, yaxis, and zaxis.
bg List with background colors, e.g. list(paper = "white”, plot = "white").
Details

This function requires the plotly package to be installed.

Value

A plotly object, which is printed for interactive visualization.

See Also

curve_sample3d(), arc_length3d()

Examples

data <- curve_sample3d(
function(t) 2 * cos(t),
function(t) 3 * sin(t),
function(t) t / 5,
0, 2 * pi, 100

)

if (requireNamespace("plotly”, quietly = TRUE)) {
plot_curve3d(data, line = list(color = "red"”, width = 4))
3

52

plot_surface_with_tangents

plot_surface_with_tangents

Surface with tangent lines at a point

Description

Draws the surface

z = f(x,y) on a rectangular domain and overlays two tangent line segments at

a given point (g, yo): one tangent in the direction of the x-axis and one tangent in the direction of
the y-axis. The partial derivatives are approximated numerically by central finite differences.

plot_surface_with_tangents(

Usage
f’
X0,
yo,
xlim = c(-3,
ylim = c(-3,
n =120,
h = 1e-05,
t_len = 0.75,

title_prefix

Arguments

.F
X0, yo

x1lim

ylim

t_len

title_prefix

3)’
3)’

= ”'F"

Scalar field, given as function(x, y) returning a numeric value.

Numeric scalars with the coordinates of the point where the tangent lines are
drawn.

Numeric vector c(x_min, x_max) giving the range of the x-axis used to draw
the surface.

Numeric vector c(y_min, y_max) giving the range of the y-axis used to draw
the surface.

Integer number of grid points per axis used to discretize the surface. Must be at
least 20.

Numeric step used for the central finite—difference approximation of the partial
derivatives f, and f,.

Numeric scalar giving half the length of the tangent segments along the x and y
directions.

Optional character string used as a prefix in the plot title (for example, the name
of the function f).

region_xyz0

Value

53

A plotly object representing the surface z = f(x,y) together with the point (o, yo, f (0, yo0)) and
the two tangent line segments. The object can be further modified with usual plotly tools.

Examples

f <- function(x, y) sin(x) * cos(y)
p <- plot_surface_with_tangents(

f,

X0 =1, yo =1,
xlim = c(-3, 3),
ylim = c(-3, 3),
n = 80

#p

region_xyz0

Planar region {(z,y) : a < x < b,H1(x) <y < H2(x)} drawn at
height z0

Description

Builds the planar region

Q={(z,y): a <z <b, Hi(r) <y < Ha(wr)}

and renders it as a thin patch on the plane z = 2. Optionally it draws the boundary curves, partition
lines along z, and a surface patch.

Builds the planar region defined by a < < b and H;(x) < y < Hs(x), and renders it as a thin
patch on the plane z = zy. Optionally it draws the boundary curves, partition lines along z, and a

surface patch.

Usage

region_xyz0(
H1,
H2,
a,
b,
z0,
D,
plot = TRUE,
n_curve = 800,
show_surface =

FALSE,
surface_colorscale = "Blues”

’

surface_opacity = 0.3,

54 region_xyz0

show_surface_grid = TRUE,
surface_grid_color = "rgba(60,80,200,0.25)",
surface_grid_width = 1,
boundary_line = list(color = "blue”, width = 2),
partition_line = list(color = "blue"”, width = 1),
show_end_edges = TRUE,
scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title ="y"),
zaxis = list(title = "z")),
bg = list(paper = "white"”, plot = "white")
)

region_xyz@(
H1,
H2,
a,
b,
z0,
D,
plot = TRUE,
n_curve = 800,
show_surface = FALSE,
surface_colorscale = "Blues”,
surface_opacity = 0.3,
show_surface_grid = TRUE,
surface_grid_color = "rgbha(60,80,200,0.25)",
surface_grid_width = 1,
boundary_line = list(color = "blue”, width = 2),
partition_line = list(color = "blue"”, width = 1),
show_end_edges = TRUE,
scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),
bg = list(paper = "white"”, plot = "white")

)
Arguments
H1, H2 Functions H_i (x); lower and upper y-boundaries.
a, b Numeric scalars; x-interval endpoints with a < b.
z0 Numeric scalar; height of the display plane z = 2.
D Integer > 0; number of x-partitions (controls vertical slices and grid density).
plot Logical; if TRUE, draw the region with plotly.
n_curve Integer; number of samples used to trace each boundary curve y = H;(x).

show_surface Logical; if TRUE, draw a thin surface patch of the region at z = z.
surface_colorscale

Character; Plotly colorscale for the surface patch (for example, "Blues”).
surface_opacity

Numeric in [0, 1]; opacity of the surface patch.

region_xyz0 55

show_surface_grid
Logical; show grid/contours on the surface patch.

surface_grid_color
Character; color for surface grid lines.

surface_grid_width
Numeric; width for surface grid lines.

boundary_line List; style for the boundary polylines (for example, list(color = "blue”,
width = 2)).

partition_line List; style for the partition lines at z = a + k(b — a)/D.

show_end_edges Logical; draw edges at z = a and = = b.

scene List; Plotly 3D scene options.
bg List with paper and plot background colors.
Value

A list with components:

data List (or tibble, depending on the implementation) with the sampled curves and/or the grid
used.

plot A plotly object when plot = TRUE, otherwise NULL.
A list with components:

data List (or tibble, depending on the implementation) with the sampled curves and/or the grid
used.

plot A plotly object when plot = TRUE, otherwise NULL.

Examples

H1 <- function(x) @

H2 <- function(x) 1 - x

Region under H2 and above H1 in [0,1], drawn at z = @
region_xyz@(H1, H2, a =0, b =1, z0 = 0,

D = 20, plot = TRUE, show_surface = TRUE)

H1 <- function(x) @

H2 <- function(x) 1 - x

Region under H2 and above H1 in [0,1], drawn at z = @
region_xyz@(H1, H2, a =0, b =1, z0 = 0,

D = 20, plot = TRUE, show_surface = TRUE)

56 related_rates_grad

related_rates_grad Related rates via the gradient (implicit constraint)

Description

Computes related rates for an implicit constraint using the gradient. Let
g(x) =0, x=x(t)cRF
Differentiating with respect to time yields
Vg(x(t))-x'(t) = 0.

If all components of x’(t) are known except one, the missing rate is determined by this orthogonality
condition (velocity tangent to the level set).

Usage

related_rates_grad(g, x, known_rates, solve_for, var_names = NULL, h = 1e-06)

Arguments
g Function. A scalar function g(x1, x2, ..., xk) defining the implicit constraint g =
0. It must accept k numeric arguments and return a numeric scalar.
X Numeric vector of length k. Point where rates are evaluated. This point should
satisfy g(x) = 0 (approximately).
known_rates Numeric vector of known rates. It can be: (1) a named numeric vector with
names matching var_names (e.g. "x","y"), (2) a named numeric vector with
names matching paste0("d", var_names) (e.g. "dx","dy"), or (3) an unnamed
numeric vector of length k with NA for the unknown component.
solve_for Integer or character. Which rate to solve for. If integer, it is the position in
var_names (1..k). If character, it may be either a variable name (e.g. "y") or a
rate name (e.g. "dy").
var_names Character vector of length k. Variable names. If NULL, defaults to c("x1","x2",...,"xk").
h Numeric scalar. Step size for numerical partial derivatives.
Value

A list with components:

rate Numeric scalar. The solved rate (the requested component of x’(t)).

rates Named numeric vector length k. Full rate vector x’(t). Names are paste0("d", var_names).
grad Numeric vector length k. Gradient of g at x.

dot Numeric scalar. Dot product grad . rates (should be near 0).

gx Numeric scalar. g(x) value (should be near O if x is on the constraint).

riemann_prisms3d 57

Examples

Ladder (implicit circle): x*2 + y*2 = L*2

Suppose L = 5, at the instant (x,y) (4,3) and dx/dt = -1.
Then dy/dt = -(x/y) dx/dt = (4/3).

g <- function(x, y) x*2 + y*2 - 25

out <- related_rates_grad(
g =28,
x = c(4, 3),
known_rates = c(dx = -1, dy = NA),
solve_for = "dy",
var_names = c("x", "y")
)
out$rate
out$rates

riemann_prisms3d Riemann rectangular prisms over a planar region

Description

Approximates the double integral of a scalar function over a planar region using an N-by-M rect-
angular partition and rectangular prisms with constant height on each cell. The region is defined
by an x-interval and two functions giving the lower and upper y-limits. Each valid cell produces
a prism whose height corresponds to a chosen estimate of the function on that cell: lower value,
upper value, or mean value.

When plot = TRUE, a 3D visualization of the prisms is produced using plotly. Optionally, the actual
surface z = F(x, y) can also be drawn over the rectangular bounding box that contains the region.

Usage

riemann_prisms3d(
f,
f1,
f2,

plot = TRUE,

estimate = c("lower”, "upper"”, "mean", "all"),
sample_n = 6,

show_surface = FALSE,

surface_colorscale = "Viridis”,
surface_opacity = 0.35,

show_surface_grid = TRUE,

58 riemann_prisms3d

surface_grid_color = "rgba(60,80,200,0.25)",

surface_grid_width = 1,

color_by = c("mean”, "lower”, "upper”),

top_colorscale = "Y10rBr",

top_opacity = 0.85,

side_color = "rgba(60,60,60,0.25)",

side_opacity = 0.35,

frame_color = "rgba(0,0,0,0.55)",

frame_width = 1.5,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white”, plot = "white")

)
Arguments

f A function f(x, y) returning a numeric scalar.

f1, f2 Functions returning the lower and upper y-boundaries for each x. The valid y-
range at each x is the interval between the minimum and maximum of these two
functions.

a,b Numeric endpoints of the x-interval. Must satisfy a < b.

N, M Integer numbers of subdivisions in x and y for the rectangular partition.

plot Logical. If TRUE, the 3D visualization is generated.

estimate Character. One of "lower”, "upper”, "mean”, or "all”, indicating which esti-
mate to highlight.

sample_n Integer. Number of evaluation points per direction inside each cell when com-

puting lower, upper, and mean values.
show_surface Logical. If TRUE, draws the surface z = F(x, y) over the entire rectangular

bounding box.
surface_colorscale

Colorscale used for the surface.
surface_opacity

Opacity for the surface.
show_surface_grid

Logical. If TRUE, draws a grid on the surface.
surface_grid_color

Color of the grid lines.
surface_grid_width

Width of the grid lines.

color_by Character. Determines the value used to color the top of each prism: "mean”,
"lower"”, or "upper”.

top_colorscale Colorscale for the prism tops.
top_opacity Opacity of the prism tops.

side_color Color for the vertical faces of the prisms.

riemann_rectangles2d 59
side_opacity Opacity of the prism sides.
frame_color Color for the prism frame lines.
frame_width Width of the frame lines.
scene A list with plotly 3D scene settings.
bg A list with background colors for the figure.
Value
A list containing:
sum_lower Lower Riemann sum for the chosen partition.
sum_upper Upper Riemann sum.
sum_mean Mean-value Riemann sum.
cells A tibble describing all valid cells.
fig A plotly object if plot = TRUE, otherwise NULL.
estimate When estimate !="all", the selected Riemann sum (lower/upper/mean) is repeated

here for convenience.

Examples

f <- function(x,

y) X xy

f1 <- function(x) @
f2 <- function(x) 1 - x
riemann_prisms3d(f, f1, f2, @0, 1, N =10, M = 10, plot = FALSE)

riemann_rectangles2d Animate Riemann rectangles under a curve (2D)

Description

Builds an interactive Plotly animation of Riemann sums approximating the area under a function on

a closed interval.

Usage

riemann_rectangles2d(

n_vals = NULL,

method = c("midpoint”, "left", "right"),
n_curve = 400L,

frame_ms = 900L,

transition_ms

= oL,

60 riemann_sum_1d_plot

title = NULL,
show_sum = TRUE,
yo = 0
)
Arguments
f Function. A real-valued function. It must accept a numeric vector and return a
numeric vector of the same length.
a Numeric scalar. Left endpoint.
b Numeric scalar. Right endpoint. Must satisfy b > a.
n_vals Integer vector. Values of the number of subintervals used as animation frames.
If NULL, a default increasing sequence is used.
method Character. Rule used for rectangle heights: "midpoint" (default), "left", or
"right".
n_curve Integer. Number of points used to draw the base curve.
frame_ms Integer. Frame duration in milliseconds.

transition_ms Integer. Transition duration in milliseconds.

title Character. Plot title. If NULL, a default title is used.
show_sum Logical. If TRUE, show n and the value of the Riemann sum in hover text.
yo Numeric scalar. Baseline for rectangles (default 0).

Value

A plotly object (htmlwidget) with animation frames.

Examples

library(plotly)
f <= function(x) x*2
riemann_rectangles2d(f, @, 1)

riemann_sum_1d_plot 1D Riemann sums with optional plot

Description

Computes lower, upper, and midpoint Riemann sums for a scalar function f(x) on an interval
[xmin, xmax]. Optionally draws a 2D plot with rectangles and, if requested, the true curve.

riemann_sum_1d_plot 61

Usage
riemann_sum_1d_plot(
f,
xlim,
n=12L,
methods = c("lower”, "upper”, "mid"),

show_curve = TRUE,
curve_res = 400L,

colors = list(lower = "#a1d99b", upper = "#fc9272", mid = "#9ecael"),
alpha = 0.8,

edge_color = "black",
edge_width = 1.2,
curve_color = "black”,
curve_width = 2,
show_baseline = TRUE,
baseline = 0,
baseline_color = "gray50",
baseline_width = 1,
warn_heavy = TRUE

)
Arguments

f Function function(x) returning numeric values.

x1im Numeric vector c(xmin, xmax) with xmax > xmin.

n Integer. Number of subintervals.

methods Character vector with any of "lower”, "upper”, "mid" indicating which rect-
angle types to draw.

show_curve Logical. If TRUE, overlays the curve f(x).

curve_res Integer. Number of points used to draw the curve.

colors Named list specifying fill colors for 1ist(lower=..., upper=..., mid=...).

alpha Numeric in [@, 1]. Fill opacity for rectangles.

edge_color Color for rectangle borders.

edge_width Border width.

curve_color Color for the curve.

curve_width Line width for the curve.

show_baseline Logical. If TRUE, draws a horizontal baseline.
baseline Numeric. Y-value for the baseline.
baseline_color Baseline color.

baseline_width Baseline width.

warn_heavy Logical. If TRUE, warns when n is very large.

62

Value
A list with components:

* lower_sum Lower Riemann sum.
* upper_sum Upper Riemann sum.
* mid_sum Midpoint Riemann sum.
* dx Subinterval width.

* x_breaks Partition points.

» figure A plotly object, or NULL if not available.

Examples

f <= function(x) sin(2*x)

out <- riemann_sum_1d_plot(
f, xlim = c(@, pi), n =10,
methods = c("lower”, "upper”,"mid"),
show_curve = TRUE

)

out$mid_sum

riemann_sum_2d_plot

riemann_sum_2d_plot 2D Riemann sums (upper, lower, midpoint) with a 3D plot

Description

Visualize 2D Riemann sums for a scalar field f(x,y) over a rectangular domain [Zin, Zmax] X
[¢mins Ymax)- The function computes upper, lower, and midpoint sums and renders a 3D figure
showing step tiles for the selected methods. Optionally overlays the true surface z = f(z,y) and a

base grid on the zy-plane.

Usage

riemann_sum_2d_plot(
f}
xlim,
ylim,
nx = 8,
ny = 8,
methods = c("lower"”, "upper”, "mid"),
show_surface = TRUE,
surface_res = c(60L, 60L),
surface_colorscale = "Viridis”,
surface_opacity = 0.5,
base_plane = TRUE,
z0 = 0,

riemann_sum_2d_plot 63

base_opacity = 0.15,

base_color = "lightgray",

show_base_grid = TRUE,

grid_color = "gray50",

grid_width = 1,

tile_opacity = 0.92,

colors = list(lower = "#a1d99b", upper = "#fc9272", mid = "#9ecael"),
edge_color = "black”,

edge_width = 1.2,
warn_heavy = TRUE
)
Arguments
f function(x, y) returning a numeric scalar f(x,y).
x1lim, ylim Numeric length-2 vectors c(min, max) for the domain.
nx, ny Positive integers: number of subintervals along = and y.
methods Character vector with any of c("lower"”,"upper”,”mid”). Controls which

Riemann tiles are drawn. (All estimates are returned.)
show_surface Logical; if TRUE overlays the true surface z = f(z,y).

surface_res Integer vector c(nx_s, ny_s) for the surface mesh.
surface_colorscale

Plotly colorscale for the true surface (e.g. "Viridis").
surface_opacity

Opacity of the true surface (0-1).

base_plane Logical; if TRUE draws a faint base plane at z0.
z0 Numeric; height of the base plane (typically 0).
base_opacity Opacity of the base plane (0-1).

base_color Color of the base plane.

show_base_grid Logical; if TRUE draws partition grid lines on the base plane.

grid_color Color of the base grid lines.
grid_width Line width of the base grid.
tile_opacity Opacity of Riemann tiles (0-1).
colors Named list for tile colors (hex or rgba), e.g.: 1ist(lower="#a1d99b", upper="#fc9272",
mid="#9ecael").
edge_color Edge color for vertical edges of tiles.
edge_width Line width for tile edges.
warn_heavy Logical; if TRUE, warns when nx*ny is large.
Details

Upper/lower tiles use corner samples (minimum/maximum of the four corners), and the midpoint
tiles sample at the cell center.

64 secant_tangent

Value

A list with:

e lower_sum, upper_sum, mid_sum: numeric estimates,
* dx, dy: partition widths,
e breaks: list with x_breaks, y_breaks,

* figure: the plotly object (or NULL if plotly is not available).

Examples

f <- function(x, y) exp(-(x*2 + y*2)) * (1 + 0.3 * cos(3*x) * sin(2*y))
out <- riemann_sum_2d_plot(

f, xlim = ¢c(-2, 2), ylim = c(-2, 2),

nx = 8, ny = 7, methods = c("lower"”,"mid", "upper"),

show_surface = TRUE, surface_res = c(80, 80),

surface_colorscale = "Y1GnBu"”, surface_opacity = 0.45

)

out$lower_sum; out$mid_sum; out$upper_sum

secant_tangent Secant lines converge to the tangent line (Plotly)

Description

Approximates the derivative of a function at a point numerically and builds an interactive Plotly
animation showing how secant (incremental quotient) lines converge to the tangent line as the step
size decreases. The secant point(s) used for the slope computation are also animated.

Usage
secant_tangent(
f}
X0,
h_vals = NULL,
method = c("forward”, "central"),
xlim = NULL,

n_curve = 400L,
frame_ms = 220L,
transition_ms = 220L,
title = NULL,
safe_mode = TRUE

secant_tangent

Arguments

.F

X0

h_vals

method

x1lim

n_curve
frame_ms
transition_ms
title

safe_mode

Details

65

Function. A real-valued function f(x). It must accept a numeric vector and return
a numeric vector of the same length.

Numeric scalar. Point where the derivative is approximated.

Numeric vector. Positive step sizes used as animation frames. If NULL, a de-
fault decreasing sequence is used.

Character. Derivative approximation method: "forward" (default) or "central".

Numeric vector of length 2. Plot range for x. If NULL, it is chosen automatically
from x0 and h_vals.

Integer. Number of points used to draw the curve and lines.
Integer. Frame duration in milliseconds.

Integer. Transition duration in milliseconds.

Character. Plot title. If NULL, a default title is used.

Logical. If TRUE, use calmer animation defaults intended to reduce flicker and
visual stress.

The forward incremental quotient is

The tangent line model at x0 is

Value

A list with components:

plot A plotly object (htmlwidget) with animation frames.

derivative Numeric scalar. Derivative estimate using the smallest h.

data Data frame used for the animated secant lines (useful for debugging).

Examples

library(plotly)

f <- function(x) x*2
out <- secant_tangent(f, x0 = 1)

out$plot
out$derivative

66 solid_cylindrical3d

g <- function(x) sin(x)
secant_tangent(g, x0 = 0.7, method = "central”, h_vals = 2*(-(1:7)))

solid_cylindrical3d Cylindrical solid defined by radial and vertical bounds (with optional
plot)

Description

Builds and optionally plots, using plotly, a three-dimensional solid described in cylindrical coordi-
nates. The solid is defined by:

* an angular variable theta in the interval [th_min, th_max],
¢ aradial variable r between R1(theta) and R2(theta),

¢ and a vertical coordinate z between Z1(r, theta) and Z2(r, theta).

The surface is rendered by sampling a curvilinear grid in the parameters (theta, u, v), where u
and v vary in [@, 1] and are used as linear blending variables along the radial and vertical directions,
respectively.

When volume computation is requested, the function numerically approximates the triple integral of
the form integral theta from th_min to th_max of integral r fromR1(theta) to R2(theta)
of integral z from Z1(r, theta) to Z2(r, theta) of r dz dr dtheta, which is the standard vol-
ume element in cylindrical coordinates.

Usage
solid_cylindrical3d(
R1,
R2,
1,
2,
th_min,
th_max,
plot = TRUE,
n_theta = 160,
n_u =70,
n_v =70,
mode = c("faces"”, "wireframe”, "both"),
colorscale = "Blues”,

opacity = .35,

show_surface_grid = TRUE,

surface_grid_color = "rgba(60,80,200,0.25)",
surface_grid_width = 1,

edge_line = list(color = "black”", width = 2),

solid_cylindrical3d 67

wire_line = list(color = "rgba(0,0,0,0.35)", width = 1),

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white"”, plot = "white"),

compute_volume = FALSE,

vol_method = c("adaptive”, "grid"),

ntheta_vol = 400,

nr_vol = 400
)
Arguments
R1, R2 Functions function(theta) giving the inner and outer radius bounds, respec-
tively.
71,72 Functions function(r, theta) giving the lower and upper z bounds.

th_min, th_max Angular limits (numeric scalars) with th_max > th_min.

plot Logical. If TRUE, the solid is plotted using plotly.

n_theta, n_u, n_v
Mesh resolution in theta (angle), u (radial blend) and v (vertical blend).

mode Character string, one of "faces”, "wireframe"” or "both”, indicating whether
to draw only the surface, only a wireframe or both.

colorscale Plotly colorscale for the surface. It can be a named scale, a single color, or a
character vector of colors interpreted as a gradient.

opacity Surface opacity, a numeric value between 0 and 1.

show_surface_grid
Logical. If TRUE, draws a grid over the surface.

surface_grid_color, surface_grid_width
Color and line width used for the surface grid.

edge_line,wire_line
Line style lists used for the edges and the wireframe lines when those are drawn.

scene, bg Plotly 3D scene configuration and background colors. The background list typ-
ically has entries paper and plot.

compute_volume Logical. If TRUE, the volume of the solid is approximated numerically.

vol_method Character string. Either "adaptive"”, which uses nested stats: :integrate, or
"grid"”, which uses the trapezoidal rule over a regular mesh.

ntheta_vol, nr_vol

Mesh sizes in the angular and radial directions used when vol_method = "grid".
Value

A list with components:

* theta_seq, u_seq, v_seq: the parameter sequences used for sampling the surface,
» fig: a plotly object when plot = TRUE, or NULL otherwise,

e volume: NULL if compute_volume = FALSE, or a list containing the numeric volume estimate
and metadata (method and grid parameters) when compute_volume = TRUE.

68 solid_of_revolution_y

Examples

Example: a quarter-twisted cup
R in [0, 1 + 0@.2%cos(theta)], =z in [0@, 1 + 0.5%r]
R1 <- function(theta) @
R2 <- function(theta) 1 + @.2xcos(theta)
Z1 <- function(r, theta) @
Z2 <- function(r, theta) 1 + @.5x%r
solid_cylindrical3d(
R1, R2, Z1, Z2, th_min = @, th_max = pi/2,
plot = FALSE, mode = "both"”,
colorscale = c("white", "#2a9d8f"), opacity = 0.35,
show_surface_grid = TRUE,
compute_volume = TRUE, vol_method = "adaptive”
Y$volume

solid_of_revolution_y Solid of revolution around a horizontal line

Description

Construct a three-dimensional surface for the solid obtained by rotating the graph of a function f (x)
around the line y = a on a finite interval, and compute its volume and surface areas.

Usage

solid_of_revolution_y(
f,
xlim,
a,
nx 120L,
nt 120L,
deriv = NULL,
h = NULL,
include_end_caps = FALSE,
plot = TRUE,
colors = list(surface = "steelblue”, axis = "black”, curve = "firebrick"),
opacity = 0.9,
show_axis = TRUE,
show_profile_curve = TRUE,
curve_thetas = 0,
curve_width = 4,
curve_opacity = 1,
scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z"))

solid_of_revolution_y

Arguments

.F

x1lim

nx
nt

deriv

h

69

Function of one numeric argument x that returns a numeric value.

Numeric vector of length two with the limits of the x interval c(xmin, xmax),
with xmax > xmin.

Numeric scalar that gives the horizontal axis of rotation.
Integer number of grid points along the x direction (for plotting).
Integer number of grid points along the angular direction (for plotting).

Optional function that returns the derivative of f. If NULL a numeric derivative
is used.

Optional numeric step for the numeric derivative.

include_end_caps

plot

colors

opacity

show_axis

Logical value. If TRUE the area of the circular cross sections at the ends of the
interval is added to the total area.

Logical; if TRUE and plotly is available, the solid is drawn.

List with optional entries surface, axis and curve that control the colours used
in the plot.

Numeric value between 0 and 1 that controls the surface opacity in the plot.

Logical value indicating whether the axis of rotation is drawn.

show_profile_curve

curve_thetas
curve_width
curve_opacity

scene

Value

Logical value indicating whether the generating curve is drawn on the surface.
Numeric vector of angles (in radians) where profile curves are drawn.
Numeric line width for the profile curves.

Numeric value between 0 and 1 for the profile curves.

List of plotly scene options used in plotly::layout().

A list with components:

e volume: numeric value of the volume.

e surface_area_lateral: numeric value of the lateral area.

e surface_area_total: numeric value of the total area.

* figure: plotly object with the three-dimensional plot if plot = TRUE and plotly is available;
otherwise NULL.

Examples

f <- function(x) sqrt(x)
solid_of_revolution_y(f, xlim = c(@, 4), a = @, plot = FALSE)

70 solid_spherical3d

solid_spherical3d Solid in spherical coordinates with Plotly visualization and volume

Description

Draws a three-dimensional solid described in spherical coordinates by:

¢ aradial variable r between R1(theta, phi) and R2(theta, phi),
* an azimuthal angle theta in the interval [theta_range[1], theta_range[2]] (in radians),
* apolar angle phi in the interval [phi_range[1], phi_range[2]] (in radians).
The function uses the standard convention for spherical coordinates: theta is the azimuth (angle in
the xy-plane) and phi is the polar angle measured from the positive z-axis.
Optionally, the volume of the solid is computed using the spherical volume element. The exact
integral has the form:
* inner integral: from r = R1(theta, phi) to r =R2(theta, phi) of r*2 * sin(phi) dr,
e outer integrals: over phi in [phi_min, phi_max] and theta in [theta_min, theta_max].

Equivalently, for each pair (theta, phi) one integrates (R2(theta, phi)*3 - R1(theta, phi)*3)
/ 3 * sin(phi) over the angular rectangle.

Usage

solid_spherical3d(
R1,
R2,
theta_range = c(0, 2 * pi),
phi_range = c(@, pi),
n_theta = 160,

n_phi = 120,

plot = TRUE,

show_surfaces = c(TRUE, TRUE),
colorscales = list("Blues”, "Reds"),

opacities = c(0.3, 0.35),

show_surface_grid = TRUE,

surface_grid_color = "rgba(60,80,200,0.25)",

surface_grid_width = 1,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white”, plot = "white"),

compute_volume = FALSE,

vol_method = c("adaptive”, "grid"),

n_th_vol = 600,

n_ph_vol = 400

solid_spherical3d

Arguments

R1, R2
theta_range
phi_range
n_theta, n_phi

plot
show_surfaces

colorscales

opacities

71

Functions function(theta, phi) giving the inner and outer radius, respec-
tively, as numeric scalars.

Numeric vector of length 2, c(theta_min, theta_max), giving the azimuth
interval in radians.

Numeric vector of length 2, c(phi_min, phi_max), giving the polar angle in-
terval in radians.

Mesh resolution for the two boundary surfaces. Each surface is sampled on an
n_phi x n_theta grid.

Logical. If TRUE, the solid boundaries are drawn with plotly.

Logical vector of length 2 indicating which spherical shells to show in the plot,
in the order c(r =R1, r =R2).

Colorscales for the two surfaces. You can pass:

* a single Plotly colorscale (string, single color, or vector of colors) applied
to both surfaces, or
* alist of length 2, with one colorscale per surface.

Flat colors such as "#2a9d8f" or "rgba(0,0,0,0.6)" are also accepted.

Numeric vector of length 1 or 2 giving the opacity of the two surfaces.

show_surface_grid

Logical. If TRUE, draws grid lines on the surfaces.

surface_grid_color, surface_grid_width

scene

bg

compute_volume

vol_method

Color and width for the surface grid lines.

Plotly 3D scene settings. By default the aspect mode is "data” and each axis
has a title.

Background colors, typically a list of the form list(paper = "white", plot =
"white").

Logical. If TRUE, the volume of the solid is approximated numerically using the
spherical volume integral.

Character string indicating the integration method for the volume: "adaptive”
uses nested stats::integrate, while "grid"” uses the trapezoidal rule on a
regular grid.

n_th_vol, n_ph_vol

Value

A list with:

Integer resolutions for the grid method in the azimuth and polar directions, re-
spectively (ignored when vol_method = "adaptive").

* theta_seq, phi_seq: the parameter sequences used for plotting,

* R1_surf, R2_surf: lists containing the matrices X, Y, Z for the two boundary surfaces (or NULL
if the corresponding surface is not shown),

» fig: a plotly figure when plot = TRUE, otherwise NULL,

e volume: NULL if compute_volume = FALSE, or a list with the numeric volume estimate, the
method used and additional metadata when compute_volume = TRUE.

72 solid_xyz3d

Examples

Example 1: Spherical shell: a <= r <= b, independent of angles
R1 <- function(th, ph) 0.8
R2 <- function(th, ph) 1.2
out <- solid_spherical3d(

R1, R2,
theta_range = c(0, 2x*pi),
phi_range = c(0, pi),
plot = TRUE,
colorscales = list("Blues”, "Reds"),
opacities = c(0.25, 0.35),
compute_volume = TRUE
)
out$volume$estimate # approximately 4/3 * pi * (1.2”"3 - 0.8"3)

Example 2: Spherical cap: @ <= r <=1, phi in [0, pi/3]
R1 <- function(th, ph) @
R2 <- function(th, ph) 1
out2 <- solid_spherical3d(
R1, R2,
theta_range = c(0, 2xpi),
phi_range = c(0, pi/3),
plot = TRUE,
compute_volume = TRUE

)

out2$volume$estimate # analytic value matches the standard spherical cap formula

solid_xyz3d Solid defined by bounds in x, y and z

Description

Constructs a three-dimensional solid defined by bounds in the variables x, y y z, and optionally
renders it using plotly. The solid is described by:

* an interval for x between a y b,

* lower and upper functions in the y direction,

¢ lower and upper functions in the z direction that may depend on both x y y.
The function uses a curvilinear-prism parametrization to build meshes for the six faces of the solid.
It supports different display modes (faces, wireframe, or both), optional numerical volume compu-

tation, and internal slices on coordinate planes (slice arguments are reserved for future extensions
and are currently ignored).

solid_xyz3d 73

Usage

solid_xyz3d(
H1,
H2,
G1,
G2,
a,
b,
plot = TRUE,
n_x = 120,
n_u = 60,
n_v = 60,
mode = c("faces"”, "wireframe”, "both"),
show_faces = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
colorscales = c("Blues"”, "Blues”", "Greens", "Greens", "Reds”, "Reds"),

opacities = 0.35,

show_surface_grid = TRUE,

surface_grid_color = "rgha(60,80,200,0.25)",
surface_grid_width = 1,

show_edges = TRUE,

edge_line = list(color = "black”, width = 2),
wire_step = 6,
wire_line = list(color = "black"”, width = 1),

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white"”, plot = "white"),

compute_volume = FALSE,

vol_method = c("adaptive”, "grid"),

nx_vol = 300,

ny_vol = 300,

slice = list(x = NULL, y = NULL, z = NULL),
slice_mode = c("surface”, "wireframe”, "both"),

slice_nx = 200,

slice_nu = 120,

slice_nv = 120,

slice_colorscales = list(x = "Oranges”, y = "Purples”, z = "Greens"),
slice_opacity = 0.55,

slice_show_grid = TRUE,

slice_grid_color = "rgba(890,80,80,0.25)",

slice_grid_width = 1,

slice_wire_step = 8,

slice_wire_line = list(color = "black”, width = 2, dash = "dot")

Arguments

H1, H2 Functions of one variable x giving the lower and upper bounds in the y direction.

G1, G2 Functions of two variables x y y giving the lower and upper bounds in the z

74

a, b
plot

n_x, N_u, N_V

mode

show_faces

colorscales

opacities

solid_xyz3d

direction.
Numeric endpoints of the interval for x. It is assumed that b > a.
Logical; if TRUE, the solid is rendered with plotly.

Integers giving the mesh resolution in the principal parameter along x and in the
two internal parameters of the face meshes.

n o n

Character string; one of "faces”, "wireframe” or "both", indicating whether
to draw surfaces, wireframe, or a combination of both.

Logical vector indicating which of the six faces to display. The orderis c("x=a", "x=b","y=H1", "y=H2",
A single logical value is also allowed and will be recycled.

Color specification for faces. It can be:
* asingle plotly colorscale name applied to all faces,
* asingle flat color (R color name, hexadecimal code, or "rgba(...)"),
* a vector of colors that define a gradient,
* or a list or vector of length six, assigning a scale or color specification to
each face separately.

Numeric values controlling face opacity; may be a single value or a vector of
length six.

show_surface_grid

Logical; if TRUE, draws grid lines on the faces.

surface_grid_color, surface_grid_width

show_edges
edge_line

wire_step

wire_line

scene

bg

compute_volume

vol_method

nx_vol, ny_vol

slice

slice_mode

Color and width for surface grid lines.
Logical; if TRUE, draws the edges of each face.
List with style options for edges (for example, color, width and dash pattern).

Integer greater or equal to one; controls how many mesh lines are skipped be-
tween wireframe lines.

List with style options for wireframe lines.

List with 3D scene options for plotly. By default, an aspect ratio based on the
data is used.

List specifying background colors for the figure, typically with entries paper
and plot.

Logical; if TRUE, computes an approximate volume of the solid.

Character string selecting the volume integration method: "adaptive"” for nested
calls to stats: :integrate, or "grid"” for a trapezoidal rule on a regular grid.
Integer grid sizes used when vol_method = "grid”.

List describing slices to be drawn, with components x, y y z. Each compo-

nent can be NULL, a single numeric value or a numeric vector of slice positions.
(Reserved for future use; currently ignored.)

Character string indicating how to render slices: "surface”, "wireframe” or
"both". (Reserved for future use; currently ignored.)

slice_nx, slice_nu, slice_nv

Mesh resolutions used to build the slices. (Reserved for future use; currently
ignored.)

solid_xyz3d 75

slice_colorscales
List with color scales for slices in the x, y y z directions, in the same formats
accepted by colorscales. (Reserved for future use; currently ignored.)
slice_opacity Numeric opacity for slices, between 0 and 1. (Reserved for future use; currently
ignored.)
slice_show_grid
Logical; if TRUE, draws grid lines on the slices. (Reserved for future use; cur-
rently ignored.)
slice_grid_color, slice_grid_width
Color and width for slice grid lines. (Reserved for future use; currently ignored.)
slice_wire_step
Integer controlling the spacing of wireframe lines on slices. (Reserved for future
use; currently ignored.)
slice_wire_line
List with style options for slice wireframe lines. (Reserved for future use; cur-
rently ignored.)

Details

The solid is sampled on a three-parameter grid. Two of the parameters describe the position on the
base region in the x-y plane, and the third parameter interpolates between the lower and upper z
bounds. From this parametrization the function constructs the six bounding faces, corresponding to
the two extreme values of x, the two extreme values of y, and the two extreme values of z.

Rendering options allow:

 drawing only the faces of the solid,
* drawing only a wireframe of the mesh,
* combining both faces and wireframe,
* assigning individual color scales and opacities to each face,
* showing or hiding surface grids and edges.
When internal slices are requested, the intention is to intersect the solid with planes of the form

X = constant, y = constant o z = constant. The corresponding slice arguments are reserved for
future versions of the function and are not yet implemented.

If compute_volume = TRUE, the function also computes an approximate volume of the solid using
either:
* anested adaptive integration based on stats: :integrate,

* or a trapezoidal rule on a regular grid in the x y y directions.

Value
A list with:

* X_seq, u_seq, v_seq: the parameter sequences used to build the mesh,
» fig: a plotly object when plot = TRUE, otherwise NULL,

* volume: either NULL or a list with an approximate volume estimate and related metadata when
compute_volume = TRUE.

76

Examples

Note: examples avoid plotting for CRAN checks

H1 <- function(x) -1 - x
H2 <- function(x) 1 - x*2
G1 <- function(x, y) y
G2 <- function(x, y) y + 1
s <- solid_xyz3d(
H1, H2, G1, G2,
a=-1,b=1,
plot = FALSE,
compute_volume = TRUE,
vol_method = "grid”,
nx_vol = 50, ny_vol = 50
)

s$volume$estimate

streamline_and_field3d

streamline_and_field3d

Vector field and streamline in 3D (single combined figure)

Description

Draws a three-dimensional vector field inside a curvilinear volume and overlays a streamline that
follows the field, all in a single plotly figure. The streamline is obtained by integrating an ordinary
differential equation using a fixed-step Runge-Kutta method of order four (RK4), starting from an

initial point.

Usage

streamline_and_field3d(

field,
H1,

H2,

G1,

G2,

a,

b,

NX = 8,
NY = 6,
NZ = 6,
P,
t_final,
step,

arrows = c("both”, "line", "cone"”, "none"),

arrow_scale = 0.08,
normalize_bias = 1,

normal_color = "rgba(0,0,0,0.55)",

streamline_and_field3d 77

normal_width = 2,

arrow_color = "#1d3557",

arrow_opacity = 0.95,

arrow_size = 0.35,

traj_color = "#e63946",

traj_width = 5,

traj_markers = TRUE,

traj_marker_size = 2,

scene = list(aspectmode = "data"”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white”, plot = "white"),

)
Arguments

field A function representing the vector field. It can be given as function(x, vy,
z) or function(x, y, z, t), and must return a numeric vector of length three
c(Fx, Fy, Fz).

H1, H2 Functions of one variable x giving the lower and upper bounds in the y direction.

G1, G2 Functions of two variables x and y giving the lower and upper bounds in the z
direction.

a,b Numeric endpoints of the interval for x. It is assumed that b > a.

NX, NY, NZ Integers greater than or equal to one specifying the sampling density of the field
in the three parameter directions.

p Numeric vector of length three giving the initial point of the streamline, in the
form c(x0, y0, z0).

t_final Final integration time for the streamline. A negative value integrates backward
in time.

step Step size for the fixed-step RK4 integration. Must be strictly positive.

arrows Character string indicating the arrow mode. Allowed values are "none”, "1line”,
"cone" and "both”.

arrow_scale Global arrow length scale, expressed as a fraction of the largest span of the

bounding box.

normalize_bias Numeric saturation bias used in the scaling of the vector norm. Larger values
make arrow lengths saturate earlier.

normal_color Color of the arrow shafts (line segments).

normal_width Numeric width of the arrow shafts.

arrow_color Color of the arrow heads (cones or chevrons).
arrow_opacity Opacity of the arrow heads.

arrow_size Relative size of the arrow heads with respect to arrow_scale.
traj_color Color of the streamline.

traj_width Width of the streamline.

78 streamline_and_field3d

traj_markers Logical; if TRUE, draws markers along the streamline.
traj_marker_size
Size of the markers drawn on the streamline.

scene List with 3D scene settings for plotly, such as aspect mode and axis titles.
bg List with background colors for the figure, typically with entries paper and
plot.

Reserved for backward compatibility. Do not use.

Details

The volume is defined by:

e an interval for x between a and b,

* lower and upper functions for y that depend on x,

* lower and upper functions for z that may depend on both x and y.
The function builds a regular grid in three parameters and maps each grid point to the physical
coordinates (x, y, z) using linear blends between the corresponding bounds. The vector field is

then evaluated at each of these points to obtain the base positions and vectors used to draw the
arrows.

Arrow lengths are scaled using a saturated version of the vector norm. This means that small
magnitudes produce short arrows, whereas very large magnitudes are limited by a bias parameter
so that they do not dominate the entire plot. A global scale factor controls the typical arrow length
relative to the size of the domain.

The streamline is defined as the trajectory of a particle whose velocity at each point is given by
the vector field evaluated along the path. The field may optionally depend on time; if the function
field has a time argument, it is used during integration. The integration runs from time zero up to
a final time, with positive or negative direction depending on the sign of the final time.

The resulting figure combines:

* aset of arrows representing the vector field,
* aspace curve representing the streamline,

* optional markers along the streamline and highlighted start and end points.

Value

A list with:
* field_points: a data frame with base positions x, y, z and the magnitude of the field at
each point,

* field_segments: a data frame with columns x@, y@, z@, x1, y1, z1 describing the arrow
shafts,

* traj: a data frame with the streamline data, including time, coordinates and local speed,

» fig: a plotly object containing the combined field and streamline visualization.

surface_integral_z 79

Examples

H1 <- function(x) -1

H2 <- function(x) 1

G1 <- function(x, y) -0.5

G2 <- function(x, y) 0.5

field <- function(x, y, z) c(-y, X, 0.6)

out <- streamline_and_field3d(
field, H1, H2, G1, G2,
a=-2,b=2, NX=10, NY =8, NZ =5,
p=c(l, 0, 0), t_final = 2, step = 0.05,

arrows = "both"”, arrow_scale = 0.12, normalize_bias = 1,
normal_color = "rgba(0,0,0,0.55)", normal_width = 2,
arrow_color = "#1d3557", arrow_opacity = 0.95, arrow_size = 0.4,
traj_color = "#e63946", traj_width = 5, traj_markers = TRUE
)
surface_integral_z Surface integral over a graph z = g(x, y)
Description

Computes numeric approximations of surface integrals over a surface given in graph form z = g(x,
y) on a rectangular domain in the x-y plane.

Usage
surface_integral_z(
gfun,
xlim,
ylim,
nx = 160,
ny = 160,

scalar_phi = NULL,
vector_F = NULL,

orientation = c("up”, "down"),
plot = TRUE,
title = "Surface integral over z = g(x,y)"

)

Arguments
gfun Function of two variables function(x, y) returning the height z = g(x, y) of
the surface.
x1lim Numeric vector of length 2 giving the range for X, c(x_min, x_max) with x_max

> x_min.

80

surface_integral_z

ylim Numeric vector of length 2 giving the range for y, c(y_min, y_max) with y_max
>y_min.

nx Integer, number of grid points in the x direction (recommended: at least 20).

ny Integer, number of grid points in the y direction (recommended: at least 20).

scalar_phi Optional scalar field function(x, y, z). If provided, the function computes
the scalar surface integral of scalar_phi over the surface.

vector_F Optional vector field function(x, y, z) that returns a numeric vector of length
3 c(Fx, Fy, Fz). If provided, the function computes the flux integral of vector_F
across the oriented surface.

orientation Character string indicating the orientation of the normal vector, either "up” or
"down". This affects the sign of the flux integral.

plot Logical. If TRUE, returns a plotly surface plot colored by the available integrand
(scalar field times area density or flux density).

title Character string used as the base title for the plot.

Details

Two types of integrals can be computed:

1.

2.

A scalar surface integral of the form Integral_S phi dS, where phi(x, y, z) is a scalar field
evaluated on the surface.

A flux (vector surface integral) of the form Integral_S F dot n dS, where F(x, y, z) is a
vector field and n is the chosen unit normal direction.

The surface is parametrized by (x, y) -> (x, y, g(x, y)) over arectangular domain given by x1im
and ylim. Partial derivatives of g with respect to x and y are approximated by finite differences on
a uniform grid, and the integrals are computed using a composite trapezoid rule on that grid.

Value

A list with components:

area_density_integral: numeric scalar with the value of the scalar surface integral (or NA
if scalar_phi is not supplied).

flux_integral: numeric scalar with the value of the flux integral (or NA if vector_F is not
supplied).

plot: a plotly surface object if plot = TRUE, otherwise NULL.

grids: list with matrices and grid information, including X, Y, Z, partial derivatives, and
weights.

fields: list with the scalar and/or flux integrand evaluated on the grid.

Examples

Surface z = x*2 + y*2 on [-1,1] x [-1,1]
gfun <- function(x, y) x*2 + y*2

Scalar field phi(x,y,z) = 1 (surface area of the patch)

surface_parametric_area 81

phi <- function(x, y, z) 1

Vector field F = (0, @, 1), flux through the surface
Fvec <- function(x, y, z) c(@, @, 1)

res <- surface_integral_z(
gfun,
xlim = c(-1, 1),
ylim = c(-1, 1),
nx = 60, ny = 60,
scalar_phi = phi,
vector_F = Fvec,
orientation = "up”,
plot = FALSE
)
res$area_density_integral
res$flux_integral

surface_parametric_area
Plot a parametric surface and estimate its area

Description

This function plots a smooth parametric surface defined by functions x(u,v), y(u,v), and z(u,v).
It also estimates the surface area using a trapezoidal approximation based on the magnitudes of
partial-derivative cross products.

Usage

surface_parametric_area(
xfun,
yfun,
zfun,
urange = c(0, 2 * pi),
vrange = c(0, 2 * pi),

nu = 160,
nv = 160,
h_u = NULL,
h_v = NULL,
title_prefix = "r(u,v)"
)
Arguments

xfun Function of two arguments (u, v) returning the x-coordinate of the surface.

82

yfun
zfun

urange

vrange

nu

nv
h_u

h_v

title_prefix

Details

surface_parametric_area

Function of two arguments (u, v) returning the y-coordinate of the surface.
Function of two arguments (u, v) returning the z-coordinate of the surface.

Numeric vector of length 2 giving the interval for the parameter u, c(u_min,
u_max) with u_max > u_min.

Numeric vector of length 2 giving the interval for the parameter v, c(v_min,
v_max) with v_max > v_min.

Integer, number of grid points along u (recommended: at least 20 for a reason-
able surface).

Integer, number of grid points along v (recommended: at least 20).

Numeric step size for finite differences in u. If NULL, a default based on the grid
spacing is used.

Numeric step size for finite differences in v. If NULL, a default based on the grid
spacing is used.

Character string used in the plot title.

The parametric domain is given by ranges for u and v, and the surface is evaluated on a regular grid
with sizes specified by nu and nv. Finite differences are used to approximate partial derivatives with

respect to u and v.

Value

A list with:

* plot: a plotly surface object showing the parametric surface.

e area: numeric estimate of the surface area.

e grid: list with elements U, V, X, Y, and Z, representing the parameter values and evaluated

surface.

Examples

Example: torus-like parametric surface
xfun <- function(u, v) (2 + cos(v)) * cos(u)
yfun <- function(u, v) (2 + cos(v)) * sin(u)
zfun <- function(u, v) sin(v)
result <- surface_parametric_area(

xfun, yfun, zfun,

urange = c(0, 2*pi),

vrange = c(0@, 2*pi),

nu = 80, nv = 80

)

result$area

tangent3d 83

tangent3d Unit tangent vectors along a 3D parametric curve

Description

Computes numerical unit tangent vectors of a three-dimensional parametric curve at selected values
of the parameter. The curve is defined by three functions that give its coordinate components.
For each evaluation point, the first derivative of the curve is approximated numerically and then
normalized to obtain a unit tangent direction.

Usage

tangent3d(
X,

Y,

Z,

a,

b,

t_points,

h = 1e-04,

plot = FALSE,

n_samples = 400,

vec_scale = NULL,

vec_factor = 1,

curve_line = list(color = "blue”, width = 2, dash = "solid"),

T_line = list(color = "red"”, width = 5, dash = "solid"),

show_curve = TRUE,

show_points = TRUE,

point_marker = list(color = "black"”, size = 3, symbol = "circle"),

scene = list(aspectmode = "data”, xaxis = list(title = "x(t)"), yaxis = list(title =
"y(t)"), zaxis = list(title = "z(t)")),

bg = list(paper = "white"”, plot = "white"),

tol = 1e-10
)
Arguments

X Function returning the x coordinate of the curve as a function of the parameter
t.

Y Function returning the y coordinate of the curve as a function of the parameter
t.

Z Function returning the z coordinate of the curve as a function of the parameter
t.

a Lower endpoint of the parameter interval.

b Upper endpoint of the parameter interval.

84

t_points

h
plot

n_samples

vec_scale

vec_factor

curve_line
T_line
show_curve
show_points
point_marker

scene

bg

tol

Details

tangent3d

Numeric vector of parameter values at which the tangent direction is evaluated
and optionally plotted.

Step size for centered finite-difference approximations.

Logical; if TRUE, shows a 3D plotly visualization of the curve and tangent seg-
ments.

Number of points used to sample and display the curve in the 3D plot.

Base length used for the tangent segments. If NULL, it is estimated as a small
fraction of the overall size of the sampled curve.

Multiplicative factor applied to vec_scale to control the visual size of the tan-
gent segments.

List with plotly style options for drawing the base curve.
List with plotly style options for the tangent segments.
Logical; if TRUE, the base curve is included in the plot.
Logical; if TRUE, the evaluation points are marked in the plot.
List with plotly marker options for the evaluation points.
List with 3D scene settings for plotly.

Background colors for the figure, usually a list with entries such as paper and
plot.

Numeric tolerance for detecting situations in which the first derivative is too
small to define a stable tangent direction.

For every element of t_points, the function:

* computes a centered finite-difference approximation of the first derivative of the curve,

* evaluates the magnitude of that derivative,

* divides the derivative by its magnitude to obtain a unit vector pointing in the direction of
motion of the curve at that point.

If the magnitude of the first derivative is extremely small at a given parameter value, the tangent
direction becomes numerically unstable; in such cases, the function returns NA for the corresponding
components and may emit a diagnostic message.

Optionally, the curve and the associated tangent directions can be shown in an interactive 3D plot
using plotly. Short line segments representing the tangent direction can be anchored at each evalu-
ation point. The sampled curve, the reference points and the tangent segments may be displayed or
hidden independently.

Value

A tibble with columns t, X, y, z, Tx, Ty and Tz, where the last three columns contain the components
of the unit tangent vector at each evaluation point.

tangent_plane3d 85

Examples

X <- function(t) t*cos(t)

Y <- function(t) t*sin(3*t)

Z <- function(t) t

tangent3d(X, Y, Z, a = @, b = 2xpi, t_points = c(pi/3, pi, 5%pi/3))

tangent_plane3d Tangent plane and normal vector to a surface z = f(x, y)

Description

Computes the tangent plane to the graph of a scalar field z = f(x, y) at a given point (x@, y@),
together with the associated normal vector. Optionally, it displays the surface, the tangent plane,
two orthogonal cross-sections and the normal vector using plotly.

Usage
tangent_plane3d(
f,
point,
h = 1e-04,
plot = FALSE,

Xx_window = 4,

y_window = 4,

z_window = 4,

grid = 50,

plane_window = 1,

vec_N_factor = 1,

surface_opacity =

plane_opacity = 0.

colors = list(surface = "Viridis"”, plane = "Reds”, xcut = "black”, ycut = "black”,
point = "blue”, normal = "red"),

show_surface_grid = FALSE,

surface_grid_color = "rgba(0,0,0,0.35)",

surface_grid_width = 1,

show_axis_grid = TRUE,

axis_grid_color = "#e5e5e5",

axis_grid_width = 1,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white"”, plot = "white")

)

0.85,
7,

86 tangent_plane3d

Arguments

f Function of two variables f(x, y) returning a numeric scalar, representing the
height z.

point Numeric vector of length 2 giving the point of tangency c(x0, y0).

h Numeric step used in the centered finite-difference approximation of the partial
derivatives. Must be strictly positive.

plot Logical; if TRUE, constructs a plotly figure with the surface, tangent plane, cross-
sections and normal vector.

x_window Numeric half-width of the window in the x direction used to draw the surface
patch.

y_window Numeric half-width of the window in the y direction used to draw the surface
patch.

Zz_window Numeric half-height for the visible z range around f (x0@, y@).

grid Integer number of grid points used to sample the surface in each horizontal di-
rection.

plane_window Numeric half-width of the square patch of the tangent plane drawn around (x@,
yo).

vec_N_factor Numeric scale factor applied to the unit normal vector when drawing the seg-
ment that represents the normal.

surface_opacity
Numeric value between 0 and 1 controlling the opacity of the surface patch.

plane_opacity Numeric value between 0 and 1 controlling the opacity of the tangent-plane
patch.

colors List with named entries that control colors in the plot:

» surface: colorscale for the original surface,
* plane: colorscale for the tangent plane,
* xcut: color for the intersection curve along y = yo,
* ycut: color for the intersection curve along x = x0,
* point: color for the tangency point marker,
* normal: color for the normal vector segment.
show_surface_grid
Logical; if TRUE, draws a grid on the surface patch.
surface_grid_color, surface_grid_width
Color and width of the surface grid lines.
show_axis_grid Logical; if TRUE, draws grid lines on the coordinate axes in the 3D scene.
axis_grid_color, axis_grid_width
Color and width of the axis grid lines.

scene List with 3D scene options passed to plotly: : layout, typically including axis
titles and aspectmode.

bg List with background colors for the figure, with fields paper and plot.

tangent_plane3d 87

Details

Given a differentiable function f(x, y) and a point (x@, y@), the function:

approximates the partial derivatives f_x(x@, y@) and f_y(x@, y@) using centered finite dif-
ferences with step h,

builds the tangent plane g(x, y) = f(x0, y@) + f_x(x0, y0) * (x - x0) + f_y(x0, y0) * (y
- yo),

constructs a normal vector n = (-f_x, -f_y, 1) and its unit version,

encodes the plane in the forma x + by + ¢ z + d = @, with the coefficients returned in plane_coeff.

When plot = TRUE, the function produces an interactive figure containing:

Value

a patch of the original surface,
a patch of the tangent plane centered at (x0, y@),
two intersection curves of the surface along x = x@ and y = y0,

the point of tangency and a segment in the direction of the normal vector.

A list with components:

fx, fy: approximations of the partial derivatives f_x(x0, y@) and f_y(x@, y@),
f0: value f(x0, y0),

normal_unit: unit normal vector at the point of tangency,

normal_raw: non-normalized normal vector (-fx, -fy, 1),

plane_fun: function g(x, y) for the tangent plane,

plane_coeff: numeric vector c(a, b, c, d) such thatax+by+c z+d =0 is the tangent-
plane equation,

fig: a plotly figure when plot = TRUE, otherwise NULL.

Examples

f<-

function(x, y) x*2 + y*2

tp <- tangent_plane3d(

f?

point = c(1, 1),
plot = FALSE

)

tp$plane_coeff

88 total_differential nd

total_differential_nd Total differential of a scalar field in R"n

Description

Computes the gradient of a scalar field f(x) at a point x@ using central finite differences. It also
returns the total differential, understood as the linear map v -> grad f (x0) %*% v.

Usage

total_differential_nd(f, x@, h = NULL)

Arguments
f Function of one argument x (numeric vector) returning a numeric scalar.
X0 Numeric vector giving the evaluation point.
h Step size for finite differences. Can be NULL (automatic), a scalar, or a vector of
the same length as x@.
Details

The function f must take a single numeric vector x and return a single numeric value.

Value

A list with components:

e point: the numeric vector x0,
¢ value: the numeric value f(x0),
* gradient: numeric vector with the gradient at xo,

e differential: a function d(v) that returns sum(gradient * v).

Examples

f <- function(x) x[1]*2 + 3 * x[2]*2

out <- total_differential_nd(f, c(1, 2))

out$gradient

out$differential(c(1, @)) # directional derivative in direction (1,0)

vector_field3d 89

vector_field3d 3D vector field in a curvilinear prism

Description

Displays a three-dimensional vector field inside a solid region whose bounds in the variables x, y
and z are defined by user-supplied functions. The region is described by an interval for x, lower and
upper bounds in the y direction depending on x, and lower and upper bounds in the z direction that
may depend on both x and y. The function samples this volume on a regular grid and draws arrows
representing the vector field using plotly.

Usage

vector_field3d(
F,
H1,
H2,
G1,
G2,
a,
b,
NX = 8
NY = 6,
NZ =6

plot = TRUE,

arrows = c("both”, "line"”, "cone”, "none"),

arrow_scale = 0.08,

normalize_bias = 1,

normal_color = "black”,
normal_width = 1.5,
arrow_color = "black”,

arrow_opacity = 0.9,

arrow_size = 0.35,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title = "y"),
zaxis = list(title = "z")),

bg = list(paper = "white”, plot = "white")

)
Arguments
F A function function(x, y, z) returning a numeric vector of length three, in-
terpreted as c(Fx, Fy, Fz).
H1, H2 Functions of one variable x giving the lower and upper bounds in the y direction.
G1, G2 Functions of two variables x and y giving the lower and upper bounds in the z

direction.

a,b Numeric endpoints of the interval for x. It is assumed that b > a.

90

vector_field3d

NX, NY, NZ Integers greater than or equal to one giving the grid density in the three param-
eter directions. Each parameter is sampled using a regular sequence between
zero and one with N + 1 points.

plot Logical; if TRUE, the vector field is drawn using plotly.

arrows Character string indicating the arrow mode. Allowed values are "both"”, "1ine”,
"cone” and "none”.

arrow_scale Global length scale for arrows, expressed as a fraction of the largest span of the

bounding box.

normalize_bias Numeric saturation bias used in the scaling of the vector norm. Larger values
make the arrow lengths saturate earlier.

normal_color Color for the arrow shafts (line segments).
normal_width Numeric width of the arrow shafts.
arrow_color Color for the arrow heads (cones or chevrons).

arrow_opacity Numeric opacity for arrow heads when cones are available.

arrow_size Relative size of arrow heads with respect to arrow_scale.
scene List with 3D scene options for plotly.
bg List with background colors for the figure, typically with entries paper and
plot.
Details

The domain is parameterized by three normalized parameters, one for each direction. For each
grid point, the corresponding physical coordinates in x, y and z are obtained by linear interpolation
between the lower and upper bounds. The vector field is evaluated at each of these points.

Arrow lengths are scaled using a saturated version of the vector norm. This avoids extremely long
arrows when the magnitude of the field varies strongly across the region. A bias parameter controls
how quickly the lengths approach saturation: small magnitudes produce short arrows and large
magnitudes are capped so that they remain visible without dominating the picture.

Depending on the selected mode, the function can:

 draw only line segments representing the arrow shafts,
* draw only arrow heads (cones or chevrons),
* or combine both shafts and heads.
The plotted figure can be customized through colors, opacity settings, line widths and standard

plotly scene options. If plotting is disabled, the function still returns the sampled data for further
processing.

Value

A list with:

* points: a data frame with base positions x, y, z and the magnitude of the field at each point,
* segments: a data frame with columns x0, y@, z@, x1, y1, z1 describing the arrow shafts,

» fig: a plotly object when plot = TRUE, otherwise NULL.

Xy_region 91

Examples

H1 <- function(x) -1 - x

H2 <- function(x) 1 - x*2
G1 <- function(x, y)
G2 <- function(x, y)

< <
+

F <- function(x, y, z) c(-y, x, 1)

vector_field3d(
F, H1 = H1, H2 = H2, G1 = G1, G2 = G2,
a=-1,b=1,NX=8, NY =6, NZ =6,
plot = TRUE, arrows = "both",
arrow_scale = 0.08, normalize_bias =1,
normal_color = "rgba(0,0,0,0.6)", normal_width = 2,

arrow_color = "#1d3557", arrow_opacity = 0.95, arrow_size = 0.35
)
xy_region Planar region between two curves 'y = HI(x) and y = H2(x)
Description

Constructs a numerical representation of the planar region bounded by two functions of one variable.
The region consists of all points whose horizontal coordinate lies between a and b, and whose
vertical coordinate lies between the values returned by H1(x) and H2(x). Optionally, the region
can be displayed either as a two-dimensional filled subset of the plane or as a thin surface in three
dimensions using plotly.

Usage

xy_region(
H1,
H2,

plot = TRUE,

n_curve = 800,

fill = FALSE,

fillcolor = "rgba(49,130,189,0.25)",
boundary_line = list(color = "blue”, width = 2),
partition_line = list(color = "blue"”, width = 1),
show_end_edges = TRUE,

axis_equal = TRUE,

as_3d = FALSE,

plane_z = 0,

92 Xy_region

n_u = 30,

surface_colorscale = "Blues”,

surface_opacity = 0.3,

show_surface_grid = TRUE,

surface_grid_color = "rgha(60,80,200,0.25)",

surface_grid_width = 1,

scene = list(aspectmode = "data”, xaxis = list(title = "x"), yaxis = list(title ="y"),
zaxis = list(title = "z")),

bg = list(paper = "white"”, plot = "white")

)
Arguments

H1, H2 Functions of one variable returning the lower and upper vertical bounds at each
value of x.

a,b Numeric endpoints of the interval for x. It is assumed that a < b.

D Integer giving the number of subdivisions in the horizontal direction (number of
vertical strips).

plot Logical; if TRUE, produces a visualization using plotly.

n_curve Integer giving the number of points for sampling the boundary curves.

fill Logical; if TRUE, fills the two-dimensional region.

fillcolor Character string defining the fill color in 2D mode.

boundary_line List with plotly style options for drawing the boundary curves.
partition_line List with style parameters for vertical partition lines.

show_end_edges Logical; if TRUE, draws boundary segments at the endpoints x = a and x = b.

axis_equal Logical; if TRUE, enforces equal scaling on both axes in two dimensions.

as_3d Logical; if TRUE, draws the region as a thin three-dimensional plate.

plane_z Numeric height at which to draw the region when as_3d = TRUE.

n_u Integer number of internal subdivisions used for discretization of the region in

the cross-section (between lower and upper boundary).
surface_colorscale

Character string specifying a plotly colorscale for the three-dimensional mode.
surface_opacity

Numeric value between 0 and 1 controlling the transparency of the surface in
3D mode.
show_surface_grid

Logical; if TRUE, overlays grid lines on the plotted surface in 3D mode.
surface_grid_color

Character string giving the color of the grid lines in 3D mode.
surface_grid_width

Numeric width of the grid lines in 3D mode.

scene Optional list of plotly scene parameters for three-dimensional rendering.

bg Optional list defining the background colors of the figure, typically with com-
ponents paper and plot.

Xy_region 93

Details

The function samples the interval [a, b] at n_curve points to represent the boundary curves. The
interval [a, b] is also subdivided into D vertical strips. For each strip, the values H1(x) and H2(x)
are evaluated to define the vertical bounds of the region.

Depending on the arguments, the function can:

* build a data grid suitable for numerical integration or visualization,
 draw a two-dimensional depiction of the region, possibly filled with a selected color,
* generate a simple three-dimensional visualization where the region is drawn as a thin plate at

a chosen height.

Additional options allow drawing grid lines, showing the boundary curves, controlling colors and
transparency, and adjusting the aspect ratio.

Value
A list containing:

* x: the sample points along the horizontal axis,

* y1, y2: the sampled boundary values,

* y_low, y_high: the lower and upper envelopes pmin(H1,H2) and pmax (H1,H2),
* x_part: the partition points used in the horizontal direction,

» fig: a plotly object for visualization if plot = TRUE and plotly is available; otherwise NULL.

Examples

H1 <- function(x) @
H2 <- function(x) 1 - x
xy_region(H1, H2, a =0, b =1, D = 20, plot = FALSE)

Index

arc_length3d, 3
arc_length3d(), 14, 51

binormal3d, 4

critical_points_2d, 6
critical_points_nd, 8
curl3d, 11
curvature_torsion3d, 12
curve_sample3d, 14
curve_sample3d(), 4, 50, 51
cylindrical_surface3d, 15

directional_derivative3d, 17
divergence_field, 20

frenet_frame3d, 21

gradient_direction2d, 23
gradient_scalar, 25

integrate, 4
integrate_double_polar, 26
integrate_double_xy, 27
integrate_triple_general, 28

lagrange_check, 29
line_integral2d, 32
line_integral3d_work, 34
line_integral_vector2d, 36

newton_raphson2d, 38
newton_raphson_anim, 40
normal3d, 42

osculating_circle3d, 44
osculating_ribbon3d, 46

partial_derivatives_surface, 49

plot_curve3d, 50
plot_curve3d(), 3, 4, 14

plot_surface_with_tangents, 52

region_xyz@, 53
related_rates_grad, 56
riemann_prisms3d, 57
riemann_rectangles2d, 59
riemann_sum_1d_plot, 60
riemann_sum_2d_plot, 62

secant_tangent, 64
solid_cylindrical3d, 66
solid_of_revolution_y, 68
solid_spherical3d, 70
solid_xyz3d, 72
streamline_and_field3d, 76
surface_integral_z, 79
surface_parametric_area, 81

tangent3d, 83
tangent_plane3d, 85
total_differential_nd, 88

vector_field3d, 89

Xy_region, 91

	arc_length3d
	binormal3d
	critical_points_2d
	critical_points_nd
	curl3d
	curvature_torsion3d
	curve_sample3d
	cylindrical_surface3d
	directional_derivative3d
	divergence_field
	frenet_frame3d
	gradient_direction2d
	gradient_scalar
	integrate_double_polar
	integrate_double_xy
	integrate_triple_general
	lagrange_check
	line_integral2d
	line_integral3d_work
	line_integral_vector2d
	newton_raphson2d
	newton_raphson_anim
	normal3d
	osculating_circle3d
	osculating_ribbon3d
	partial_derivatives_surface
	plot_curve3d
	plot_surface_with_tangents
	region_xyz0
	related_rates_grad
	riemann_prisms3d
	riemann_rectangles2d
	riemann_sum_1d_plot
	riemann_sum_2d_plot
	secant_tangent
	solid_cylindrical3d
	solid_of_revolution_y
	solid_spherical3d
	solid_xyz3d
	streamline_and_field3d
	surface_integral_z
	surface_parametric_area
	tangent3d
	tangent_plane3d
	total_differential_nd
	vector_field3d
	xy_region
	Index

