## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message=FALSE, warning=FALSE-------------------------------------- library(visxhclust) library(dplyr) ## ----prep--------------------------------------------------------------------- numeric_data <- iris %>% select(Sepal.Length, Sepal.Width, Petal.Width) dmat <- compute_dmat(numeric_data, "euclidean", TRUE) clusters <- compute_clusters(dmat, "complete") ## ----gapstat------------------------------------------------------------------ gap_results <- compute_gapstat(scale(numeric_data), clusters) optimal_k <- cluster::maxSE(gap_results$gap, gap_results$SE.sim) line_plot(gap_results, "k", "gap", xintercept = optimal_k) ## ----dunn--------------------------------------------------------------------- res <- compute_metric(dmat, clusters, "dunn") optimal_k <- optimal_score(res$score) line_plot(res, "k", "score", optimal_k)