
TortoiseSVN

A Subversion client for Windows

Version 1.10

Stefan Küng
Lübbe Onken
Simon Large

TortoiseSVN: A Subversion client for Windows: Version 1.10
by Stefan Küng, Lübbe Onken, and Simon Large

Publication date 2018/03/17 15:14:17 (r28148)

iii

Table of Contents
Preface .. xi

1. What is TortoiseSVN? ... xi
2. TortoiseSVN's Features .. xi
3. License ... xii
4. Development ... xii

4.1. TortoiseSVN's History .. xii
4.2. Acknowledgments ... xiii

5. Reading Guide .. xiii
6. Terminology used in this document .. xiv

1. Getting Started .. 1
1.1. Installing TortoiseSVN ... 1

1.1.1. System requirements .. 1
1.1.2. Installation ... 1

1.2. Basic Concepts ... 1
1.3. Go for a Test Drive ... 2

1.3.1. Creating a Repository .. 2
1.3.2. Importing a Project ... 2
1.3.3. Checking out a Working Copy .. 3
1.3.4. Making Changes ... 4
1.3.5. Adding More Files .. 4
1.3.6. Viewing the Project History .. 4
1.3.7. Undoing Changes .. 5

1.4. Moving On 5
2. Basic Version-Control Concepts ... 7

2.1. The Repository ... 7
2.2. Versioning Models .. 7

2.2.1. The Problem of File-Sharing ... 7
2.2.2. The Lock-Modify-Unlock Solution .. 8
2.2.3. The Copy-Modify-Merge Solution ... 9
2.2.4. What does Subversion Do? ... 11

2.3. Subversion in Action .. 11
2.3.1. Working Copies .. 11
2.3.2. Repository URLs ... 12
2.3.3. Revisions ... 13
2.3.4. How Working Copies Track the Repository ... 15

2.4. Summary .. 15
3. The Repository .. 16

3.1. Repository Creation .. 16
3.1.1. Creating a Repository with the Command Line Client .. 16
3.1.2. Creating The Repository With TortoiseSVN ... 16
3.1.3. Local Access to the Repository .. 17
3.1.4. Accessing a Repository on a Network Share .. 17
3.1.5. Repository Layout ... 17

3.2. Repository Backup ... 19
3.3. Server side hook scripts .. 19
3.4. Checkout Links ... 20
3.5. Accessing the Repository .. 20

4. Daily Use Guide .. 22
4.1. General Features .. 22

4.1.1. Icon Overlays ... 22
4.1.2. Context Menus ... 22
4.1.3. Drag and Drop .. 24
4.1.4. Common Shortcuts .. 25
4.1.5. Authentication .. 25
4.1.6. Maximizing Windows .. 26

TortoiseSVN

iv

4.2. Importing Data Into A Repository .. 26
4.2.1. Import ... 26
4.2.2. Import in Place ... 27
4.2.3. Special Files ... 28

4.3. Checking Out A Working Copy ... 28
4.3.1. Checkout Depth .. 29

4.4. Committing Your Changes To The Repository .. 31
4.4.1. The Commit Dialog ... 31
4.4.2. Change Lists .. 34
4.4.3. Commit only parts of files .. 34
4.4.4. Excluding Items from the Commit List ... 35
4.4.5. Commit Log Messages ... 35
4.4.6. Commit Progress ... 36

4.5. Update Your Working Copy With Changes From Others .. 37
4.6. Resolving Conflicts .. 39

4.6.1. File Conflicts .. 39
4.6.2. Property Conflicts ... 40
4.6.3. Tree Conflicts ... 40

4.7. Getting Status Information .. 43
4.7.1. Icon Overlays ... 43
4.7.2. Detailed Status .. 45
4.7.3. Local and Remote Status .. 45
4.7.4. Viewing Diffs ... 48

4.8. Change Lists ... 48
4.9. Shelving ... 50
4.10. Revision Log Dialog ... 51

4.10.1. Invoking the Revision Log Dialog .. 52
4.10.2. Revision Log Actions ... 52
4.10.3. Getting Additional Information .. 53
4.10.4. Getting more log messages .. 59
4.10.5. Current Working Copy Revision .. 59
4.10.6. Merge Tracking Features .. 60
4.10.7. Changing the Log Message and Author ... 60
4.10.8. Filtering Log Messages ... 61
4.10.9. Statistical Information .. 63
4.10.10. Offline Mode .. 66
4.10.11. Refreshing the View ... 66

4.11. Viewing Differences ... 66
4.11.1. File Differences ... 67
4.11.2. Line-end and Whitespace Options ... 68
4.11.3. Comparing Folders .. 68
4.11.4. Diffing Images Using TortoiseIDiff .. 69
4.11.5. Diffing Office Documents ... 71
4.11.6. External Diff/Merge Tools .. 71

4.12. Adding New Files And Directories .. 71
4.13. Copying/Moving/Renaming Files and Folders ... 72
4.14. Ignoring Files And Directories ... 73

4.14.1. Pattern Matching in Ignore Lists .. 74
4.15. Deleting, Moving and Renaming ... 75

4.15.1. Deleting files and folders .. 76
4.15.2. Moving files and folders ... 77
4.15.3. Dealing with filename case conflicts ... 77
4.15.4. Repairing File Renames .. 78
4.15.5. Deleting Unversioned Files ... 78

4.16. Undo Changes ... 78
4.17. Cleanup .. 80
4.18. Project Settings .. 81

4.18.1. Subversion Properties ... 81

TortoiseSVN

v

4.18.2. TortoiseSVN Project Properties .. 84
4.18.3. Property Editors .. 90

4.19. External Items ... 96
4.19.1. External Folders .. 96
4.19.2. External Files .. 98
4.19.3. Creating externals via drag and drop ... 98

4.20. Branching / Tagging ... 99
4.20.1. Creating a Branch or Tag .. 99
4.20.2. Other ways to create a branch or tag ... 101
4.20.3. To Checkout or to Switch... ... 101

4.21. Merging .. 102
4.21.1. Merging a Range of Revisions ... 103
4.21.2. Merging Two Different Trees ... 105
4.21.3. Merge Options ... 106
4.21.4. Reviewing the Merge Results ... 107
4.21.5. Merge Tracking ... 108
4.21.6. Handling Conflicts after Merge .. 108
4.21.7. Feature Branch Maintenance .. 109

4.22. Locking .. 110
4.22.1. How Locking Works in Subversion ... 111
4.22.2. Getting a Lock .. 111
4.22.3. Releasing a Lock ... 112
4.22.4. Checking Lock Status ... 113
4.22.5. Making Non-locked Files Read-Only ... 113
4.22.6. The Locking Hook Scripts ... 113

4.23. Creating and Applying Patches ... 114
4.23.1. Creating a Patch File .. 114
4.23.2. Applying a Patch File ... 115

4.24. Who Changed Which Line? ... 115
4.24.1. Blame for Files .. 116
4.24.2. Blame Differences .. 118

4.25. The Repository Browser .. 118
4.26. Revision Graphs ... 121

4.26.1. Revision Graph Nodes .. 121
4.26.2. Changing the View .. 122
4.26.3. Using the Graph .. 124
4.26.4. Refreshing the View ... 125
4.26.5. Pruning Trees .. 125

4.27. Exporting a Subversion Working Copy .. 125
4.27.1. Removing a working copy from version control .. 127

4.28. Relocating a working copy ... 127
4.29. Integration with Bug Tracking Systems / Issue Trackers .. 128

4.29.1. Adding Issue Numbers to Log Messages .. 128
4.29.2. Getting Information from the Issue Tracker .. 132

4.30. Integration with Web-based Repository Viewers .. 133
4.31. TortoiseSVN's Settings .. 134

4.31.1. General Settings ... 134
4.31.2. Revision Graph Settings .. 143
4.31.3. Icon Overlay Settings ... 145
4.31.4. Network Settings ... 149
4.31.5. External Program Settings ... 151
4.31.6. Saved Data Settings .. 156
4.31.7. Log Caching ... 157
4.31.8. Client Side Hook Scripts ... 160
4.31.9. TortoiseBlame Settings ... 165
4.31.10. TortoiseUDiff Settings .. 166
4.31.11. Exporting TSVN Settings .. 167
4.31.12. Advanced Settings .. 167

TortoiseSVN

vi

4.32. Final Step ... 172
5. Project Monitor .. 173

5.1. Adding projects to monitor .. 173
5.2. Monitor dialog ... 174

5.2.1. Main operations ... 174
6. The SubWCRev Program ... 176

6.1. The SubWCRev Command Line ... 176
6.2. Keyword Substitution ... 178
6.3. Keyword Example .. 179
6.4. COM interface ... 181

7. IBugtraqProvider interface ... 184
7.1. Naming conventions ... 184
7.2. The IBugtraqProvider interface ... 184
7.3. The IBugtraqProvider2 interface ... 185

A. Frequently Asked Questions (FAQ) .. 189
B. How Do I... .. 190

B.1. Move/copy a lot of files at once ... 190
B.2. Force users to enter a log message ... 190

B.2.1. Hook-script on the server ... 190
B.2.2. Project properties .. 190

B.3. Update selected files from the repository ... 190
B.4. Roll back (Undo) revisions in the repository ... 190

B.4.1. Use the revision log dialog ... 191
B.4.2. Use the merge dialog ... 191
B.4.3. Use svndumpfilter .. 191

B.5. Compare two revisions of a file or folder ... 191
B.6. Include a common sub-project ... 192

B.6.1. Use svn:externals .. 192
B.6.2. Use a nested working copy ... 192
B.6.3. Use a relative location ... 192
B.6.4. Add the project to the repository .. 193

B.7. Create a shortcut to a repository ... 193
B.8. Ignore files which are already versioned .. 193
B.9. Unversion a working copy .. 194
B.10. Remove a working copy ... 194

C. Useful Tips For Administrators .. 195
C.1. Deploy TortoiseSVN via group policies ... 195
C.2. Redirect the upgrade check ... 195
C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable .. 196
C.4. Disable context menu entries ... 196

D. Automating TortoiseSVN .. 199
D.1. TortoiseSVN Commands .. 199
D.2. Tsvncmd URL handler ... 204
D.3. TortoiseIDiff Commands .. 205
D.4. TortoiseUDiff Commands ... 206

E. Command Line Interface Cross Reference .. 207
E.1. Conventions and Basic Rules ... 207
E.2. TortoiseSVN Commands ... 207

E.2.1. Checkout ... 207
E.2.2. Update ... 207
E.2.3. Update to Revision .. 208
E.2.4. Commit ... 208
E.2.5. Diff ... 208
E.2.6. Show Log .. 209
E.2.7. Check for Modifications ... 209
E.2.8. Revision Graph ... 209
E.2.9. Repo Browser ... 209
E.2.10. Edit Conflicts .. 209

TortoiseSVN

vii

E.2.11. Resolved .. 210
E.2.12. Rename .. 210
E.2.13. Delete .. 210
E.2.14. Revert .. 210
E.2.15. Cleanup ... 210
E.2.16. Get Lock .. 210
E.2.17. Release Lock .. 210
E.2.18. Branch/Tag ... 211
E.2.19. Switch ... 211
E.2.20. Merge .. 211
E.2.21. Export ... 211
E.2.22. Relocate ... 212
E.2.23. Create Repository Here ... 212
E.2.24. Add ... 212
E.2.25. Import ... 212
E.2.26. Blame .. 212
E.2.27. Add to Ignore List ... 212
E.2.28. Create Patch ... 212
E.2.29. Apply Patch .. 212

F. Implementation Details .. 213
F.1. Icon Overlays .. 213

G. Language Packs and Spell Checkers .. 215
G.1. Language Packs .. 215
G.2. Spellchecker ... 215

Glossary ... 217
Index .. 220

viii

List of Figures
1.1. The TortoiseSVN menu for unversioned folders ... 2
1.2. The Import dialog ... 3
1.3. File Difference Viewer ... 4
1.4. The Log Dialog .. 5
2.1. A Typical Client/Server System ... 7
2.2. The Problem to Avoid .. 8
2.3. The Lock-Modify-Unlock Solution ... 9
2.4. The Copy-Modify-Merge Solution .. 10
2.5. ...Copy-Modify-Merge Continued ... 10
2.6. The Repository's Filesystem .. 12
2.7. The Repository .. 14
3.1. The TortoiseSVN menu for unversioned folders .. 16
4.1. Explorer showing icon overlays ... 22
4.2. Context menu for a directory under version control ... 23
4.3. Explorer file menu for a shortcut in a versioned folder ... 24
4.4. Right drag menu for a directory under version control .. 24
4.5. Authentication Dialog ... 25
4.6. The Import dialog .. 27
4.7. The Checkout dialog .. 29
4.8. The Commit dialog .. 32
4.9. The Commit Dialog Spellchecker ... 35
4.10. The Progress dialog showing a commit in progress .. 37
4.11. Progress dialog showing finished update .. 38
4.12. Explorer showing icon overlays .. 43
4.13. Explorer property page, Subversion tab .. 45
4.14. Check for Modifications .. 46
4.15. Commit dialog with Changelists ... 49
4.16. Shelve dialog .. 50
4.17. Unshelve dialog ... 51
4.18. The Revision Log Dialog .. 52
4.19. The Revision Log Dialog Top Pane with Context Menu .. 53
4.20. The Code Collaborator Settings Dialog .. 56
4.21. Top Pane Context Menu for 2 Selected Revisions .. 56
4.22. The Log Dialog Bottom Pane with Context Menu .. 57
4.23. The Log Dialog Bottom Pane with Context Menu When Multiple Files Selected. 58
4.24. The Log Dialog Showing Merge Tracking Revisions .. 60
4.25. Commits-by-Author Histogram ... 63
4.26. Commits-by-Author Pie Chart .. 64
4.27. Commits-by-date Graph .. 65
4.28. Go Offline Dialog .. 66
4.29. The Compare Revisions Dialog .. 69
4.30. The image difference viewer .. 70
4.31. Explorer context menu for unversioned files ... 72
4.32. Right drag menu for a directory under version control .. 73
4.33. Explorer context menu for unversioned files ... 74
4.34. Explorer context menu for versioned files .. 76
4.35. Revert dialog ... 79
4.36. The Cleanup dialog .. 80
4.37. Subversion property page .. 81
4.38. Adding properties ... 82
4.39. Property dialog for hook scripts .. 86
4.40. Property dialog boolean user types .. 87
4.41. Property dialog state user types .. 87
4.42. Property dialog single-line user types .. 88
4.43. Property dialog multi-line user types ... 89

TortoiseSVN

ix

4.44. svn:externals property page .. 90
4.45. svn:keywords property page ... 91
4.46. svn:eol-style property page .. 91
4.47. tsvn:bugtraq property page ... 92
4.48. Size of log messages property page ... 93
4.49. Language property page .. 93
4.50. svn:mime-type property page ... 94
4.51. svn:needs-lock property page ... 94
4.52. svn:executable property page .. 94
4.53. Property dialog merge log message templates ... 95
4.54. The Branch/Tag Dialog ... 99
4.55. The Switch Dialog .. 102
4.56. The Merge Wizard - Select Revision Range .. 104
4.57. The Merge Wizard - Tree Merge .. 106
4.58. The Merge Conflict Dialog .. 108
4.59. The Merge Tree Conflict Dialog ... 109
4.60. The Merge-All Dialog ... 110
4.61. The Locking Dialog .. 112
4.62. The Check for Modifications Dialog .. 113
4.63. The Create Patch dialog .. 114
4.64. The Annotate / Blame Dialog ... 116
4.65. TortoiseBlame .. 117
4.66. The Repository Browser .. 119
4.67. A Revision Graph ... 121
4.68. The Export-from-URL Dialog ... 126
4.69. The Relocate Dialog ... 127
4.70. The Bugtraq Properties Dialog .. 129
4.71. Example issue tracker query dialog ... 133
4.72. The Settings Dialog, General Page .. 135
4.73. The Settings Dialog, Context Menu Page .. 137
4.74. The Settings Dialog, Dialogs 1 Page .. 138
4.75. The Settings Dialog, Dialogs 2 Page .. 139
4.76. The Settings Dialog, Dialogs 3 Page .. 141
4.77. The Settings Dialog, Colours Page .. 142
4.78. The Settings Dialog, Revision Graph Page .. 143
4.79. The Settings Dialog, Revision Graph Colors Page .. 144
4.80. The Settings Dialog, Icon Overlays Page .. 145
4.81. The Settings Dialog, Icon Set Page .. 148
4.82. The Settings Dialog, Icon Handlers Page .. 149
4.83. The Settings Dialog, Network Page ... 150
4.84. The Settings Dialog, Diff Viewer Page .. 151
4.85. The Settings Dialog, Diff/Merge Advanced Dialog ... 155
4.86. The Settings Dialog, Saved Data Page ... 156
4.87. The Settings Dialog, Log Cache Page .. 157
4.88. The Settings Dialog, Log Cache Statistics ... 159
4.89. The Settings Dialog, Hook Scripts Page ... 160
4.90. The Settings Dialog, Configure Hook Scripts .. 161
4.91. The Settings Dialog, Issue Tracker Integration Page ... 164
4.92. The Settings Dialog, TortoiseBlame Page ... 165
4.93. The Settings Dialog, TortoiseUDiff Page .. 166
4.94. The Settings Dialog, Sync Page .. 167
4.95. Taskbar with default grouping .. 169
4.96. Taskbar with repository grouping .. 169
4.97. Taskbar with repository grouping .. 169
4.98. Taskbar grouping with repository color overlays .. 170
5.1. The edit project dialog of the project monitor ... 173
5.2. The main dialog of the project monitor .. 174
C.1. The commit dialog, showing the upgrade notification ... 195

x

List of Tables
2.1. Repository Access URLs .. 12
4.1. Pinned Revision ... 101
6.1. List of available command line switches .. 177
6.2. List of SubWCRev error codes ... 177
6.3. List of available keywords ... 178
6.4. COM/automation methods supported ... 181
C.1. Menu entries and their values .. 196
D.1. List of available commands and options .. 199
D.2. List of available options ... 205
D.3. List of available options ... 206

xi

Preface

Version control is the art of managing changes to information. It has long been a critical tool for programmers,
who typically spend their time making small changes to software and then undoing or checking some of those
changes the next day. Imagine a team of such developers working concurrently - and perhaps even simultaneously
on the very same files! - and you can see why a good system is needed to manage the potential chaos.

1. What is TortoiseSVN?

TortoiseSVN is a free open-source Windows client for the Apache™ Subversion® version control system. That
is, TortoiseSVN manages files and directories over time. Files are stored in a central repository. The repository is
much like an ordinary file server, except that it remembers every change ever made to your files and directories.
This allows you to recover older versions of your files and examine the history of how and when your data changed,
and who changed it. This is why many people think of Subversion and version control systems in general as a
sort of “time machine”.

Some version control systems are also software configuration management (SCM) systems. These systems
are specifically tailored to manage trees of source code, and have many features that are specific to software
development - such as natively understanding programming languages, or supplying tools for building software.
Subversion, however, is not one of these systems; it is a general system that can be used to manage any collection
of files, including source code.

2. TortoiseSVN's Features

What makes TortoiseSVN such a good Subversion client? Here's a short list of features.

Shell integration

TortoiseSVN integrates seamlessly into the Windows shell (i.e. the explorer). This means you can keep
working with the tools you're already familiar with. And you do not have to change into a different application
each time you need the functions of version control.

And you are not limited to using the Windows Explorer; TortoiseSVN's context menus work in many other
file managers, and also in the File/Open dialog which is common to most standard Windows applications. You
should, however, bear in mind that TortoiseSVN is intentionally developed as an extension for the Windows
Explorer. Thus it is possible that in other applications the integration is not as complete and e.g. the icon
overlays may not be shown.

Icon overlays
The status of every versioned file and folder is indicated by small overlay icons. That way you can see right
away what the status of your working copy is.

Graphical User Interface
When you list the changes to a file or folder, you can click on a revision to see the comments for that commit.
You can also see a list of changed files - just double click on a file to see exactly what changed.

The commit dialog lists all the items that will be included in a commit, and each item has a checkbox so
you can choose which items you want to include. Unversioned files can also be listed, in case you forgot to
add that new file.

Easy access to Subversion commands
All Subversion commands are available from the explorer context menu. TortoiseSVN adds its own submenu
there.

Preface

xii

Since TortoiseSVN is a Subversion client, we would also like to show you some of the features of Subversion itself:

Directory versioning
CVS only tracks the history of individual files, but Subversion implements a “virtual” versioned filesystem
that tracks changes to whole directory trees over time. Files and directories are versioned. As a result, there
are real client-side move and copy commands that operate on files and directories.

Atomic commits
A commit either goes into the repository completely, or not at all. This allows developers to construct and
commit changes as logical chunks.

Versioned metadata
Each file and directory has an invisible set of “properties” attached. You can invent and store any arbitrary
key/value pairs you wish. Properties are versioned over time, just like file contents.

Choice of network layers
Subversion has an abstracted notion of repository access, making it easy for people to implement new
network mechanisms. Subversion's “advanced” network server is a module for the Apache web server, which
speaks a variant of HTTP called WebDAV/DeltaV. This gives Subversion a big advantage in stability and
interoperability, and provides various key features for free: authentication, authorization, wire compression,
and repository browsing, for example. A smaller, standalone Subversion server process is also available. This
server speaks a custom protocol which can be easily tunneled over ssh.

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm, which works identically on both
text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally compressed
in the repository, and differences are transmitted in both directions across the network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion creates branches
and tags by simply copying the project, using a mechanism similar to a hard-link. Thus these operations take
only a very small, constant amount of time, and very little space in the repository.

3. License

TortoiseSVN is an Open Source project developed under the GNU General Public License (GPL). It is free to
download and free to use, either personally or commercially, on any number of PCs.

Although most people just download the installer, you also have full read access to the source code of this program.
You can browse it on this link https://sourceforge.net/p/tortoisesvn/code/HEAD/tree/ [https://sourceforge.net/p/
tortoisesvn/code/HEAD/tree/]. The current development line is located under /trunk/, and the released versions
are located under /tags/.

4. Development

Both TortoiseSVN and Subversion are developed by a community of people who are working on those projects.
They come from different countries all over the world, working together to create great software.

4.1. TortoiseSVN's History

In 2002, Tim Kemp found that Subversion was a very good version control system, but it lacked a good GUI client.
The idea for a Subversion client as a Windows shell integration was inspired by the similar client for CVS named
TortoiseCVS. Tim studied the source code of TortoiseCVS and used it as a base for TortoiseSVN. He then started
the project, registered the domain tortoisesvn.org and put the source code online.

Around that time, Stefan Küng was looking for a good and free version control system and found Subversion
and the source for TortoiseSVN. Since TortoiseSVN was still not ready for use, he joined the project and started
programming. He soon rewrote most of the existing code and started adding commands and features, up to a point
where nothing of the original code remained.

https://sourceforge.net/p/tortoisesvn/code/HEAD/tree/
https://sourceforge.net/p/tortoisesvn/code/HEAD/tree/
https://sourceforge.net/p/tortoisesvn/code/HEAD/tree/

Preface

xiii

As Subversion became more stable it attracted more and more users who also started using TortoiseSVN as their
Subversion client. The user base grew quickly (and is still growing every day). That's when Lübbe Onken offered
to help out with some nice icons and a logo for TortoiseSVN. He now takes care of the website and manages
the many translations.

With time, other version control systems all got their own Tortoise client which caused a problem with the icon
overlays in Explorer: the number of such overlays is limited and even one Tortoise client can easily exceed that
limit. That's when Stefan Küng implemented the TortoiseOverlays component which allows all Tortoise clients
to use the same icon overlays. Now all open source Tortoise clients and even some non-Tortoise clients use that
shared component.

4.2. Acknowledgments

Tim Kemp
for starting the TortoiseSVN project

Stefan Küng
for the hard work to get TortoiseSVN to what it is now, and his leadership of the project

Lübbe Onken
for the beautiful icons, logo, bug hunting, translating and managing the translations

Simon Large
for maintaining the documentation

Stefan Fuhrmann
for the log cache and revision graph

The Subversion Book
for the great introduction to Subversion and its chapter 2 which we copied here

The Tigris Style project
for some of the styles which are reused in this documentation

Our Contributors
for the patches, bug reports and new ideas, and for helping others by answering questions on our mailing list

Our Donators
for many hours of joy with the music they sent us

5. Reading Guide

This book is written for computer-literate folk who want to use Subversion to manage their data, but prefer to use
a GUI client rather than a command line client. TortoiseSVN is a windows shell extension and it is assumed that
the user is familiar with the windows explorer and how to use it.

This Preface explains what TortoiseSVN is, a little about the TortoiseSVN project and the community of people
who work on it, and the licensing conditions for using it and distributing it.

The Chapter 1, Getting Started explains how to install TortoiseSVN on your PC, and how to start using it straight
away.

In Chapter 2, Basic Version-Control Concepts we give a short introduction to the Subversion revision control
system which underlies TortoiseSVN. This is borrowed from the documentation for the Subversion project and
explains the different approaches to version control, and how Subversion works.

The chapter on Chapter 3, The Repository explains how to set up a local repository, which is useful for testing
Subversion and TortoiseSVN using a single PC. It also explains a bit about repository administration which is also
relevant to repositories located on a server.

Preface

xiv

The Chapter 4, Daily Use Guide is the most important section as it explains all the main features of TortoiseSVN
and how to use them. It takes the form of a tutorial, starting with checking out a working copy, modifying it,
committing your changes, etc. It then progresses to more advanced topics.

Chapter 6, The SubWCRev Program is a separate program included with TortoiseSVN which can extract the
information from your working copy and write it into a file. This is useful for including build information in your
projects.

The Appendix B, How Do I... section answers some common questions about performing tasks which are not
explicitly covered elsewhere.

The section on Appendix D, Automating TortoiseSVN shows how the TortoiseSVN GUI dialogs can be called
from the command line. This is useful for scripting where you still need user interaction.

The Appendix E, Command Line Interface Cross Reference give a correlation between TortoiseSVN commands
and their equivalents in the Subversion command line client svn.exe.

6. Terminology used in this document

To make reading the docs easier, the names of all the screens and Menus from TortoiseSVN are marked up in a
different font. The Log Dialog for instance.

A menu choice is indicated with an arrow. TortoiseSVN → Show Log means: select Show Log from the
TortoiseSVN context menu.

Where a local context menu appears within one of the TortoiseSVN dialogs, it is shown like this: Context Menu

→ Save As ...

User Interface Buttons are indicated like this: Press OK to continue.

User Actions are indicated using a bold font. Alt+A: press the Alt-Key on your keyboard and while holding it
down press the A-Key as well. Right drag: press the right mouse button and while holding it down drag the items
to the new location.

System output and keyboard input is indicated with a different font as well.

Important

Important notes are marked with an icon.

Tip

Tips that make your life easier.

Caution

Places where you have to be careful what you are doing.

Warning

Where extreme care has to be taken. Data corruption or other nasty things may occur if these warnings
are ignored.

Preface

xv

1

Chapter 1. Getting Started
This section is aimed at people who would like to find out what TortoiseSVN is all about and give it a test drive.
It explains how to install TortoiseSVN and set up a local repository, and it walks you through the most commonly
used operations.

1.1. Installing TortoiseSVN

1.1.1. System requirements

TortoiseSVN runs on Windows Vista or higher and is available in both 32-bit and 64-bit flavours. The installer for
64-bit Windows also includes the 32-bit extension parts. Which means you don't need to install the 32-bit version
separately to get the TortoiseSVN context menu and overlays in 32-bit applications.

Support for Windows 98, Windows ME and Windows NT4 was dropped in version 1.2.0, and Windows 2000 and
XP up to SP2 support was dropped in 1.7.0. Support for Windows XP with SP3 was dropped in 1.9.0. You can
still download and install older versions if you need them.

1.1.2. Installation

TortoiseSVN comes with an easy to use installer. Double click on the installer file and follow the instructions.
The installer will take care of the rest. Don't forget to reboot after installation.

Important

You need Administrator privileges to install TortoiseSVN. The installer will ask you for
Administrator credentials if necessary.

Language packs are available which translate the TortoiseSVN user interface into many different languages. Please
check Appendix G, Language Packs and Spell Checkers for more information on how to install these.

If you encounter any problems during or after installing TortoiseSVN please refer to our online FAQ at https://
tortoisesvn.net/faq.html [https://tortoisesvn.net/faq.html].

1.2. Basic Concepts

Before we get stuck into working with some real files, it is important to get an overview of how Subversion works
and the terms that are used.

The Repository
Subversion uses a central database which contains all your version-controlled files with their complete history.
This database is referred to as the repository. The repository normally lives on a file server running the
Subversion server program, which supplies content to Subversion clients (like TortoiseSVN) on request. If
you only back up one thing, back up your repository as it is the definitive master copy of all your data.

Working Copy
This is where you do the real work. Every developer has his own working copy, sometimes known as a
sandbox, on his local PC. You can pull down the latest version from the repository, work on it locally
without affecting anyone else, then when you are happy with the changes you made commit them back to
the repository.

A Subversion working copy does not contain the history of the project, but it does keep a copy of the files
as they exist in the repository before you started making changes. This means that it is easy to check exactly
what changes you have made.

You also need to know where to find TortoiseSVN because there is not much to see from the Start Menu. This
is because TortoiseSVN is a Shell extension, so first of all, start Windows Explorer. Right click on a folder in
Explorer and you should see some new entries in the context menu like this:

https://tortoisesvn.net/faq.html
https://tortoisesvn.net/faq.html
https://tortoisesvn.net/faq.html

Getting Started

2

Figure 1.1. The TortoiseSVN menu for unversioned folders

1.3. Go for a Test Drive

This section shows you how to try out some of the most commonly used features on a small test repository.
Naturally it doesn't explain everything - this is just the Quick Start Guide after all. Once you are up and running
you should take the time to read the rest of this user guide, which takes you through things in much more detail.
It also explains more about setting up a proper Subversion server.

1.3.1. Creating a Repository

For a real project you will have a repository set up somewhere safe and a Subversion server to control it. For the
purposes of this tutorial we are going to use Subversion's local repository feature which allows direct access to a
repository created on your hard drive without needing a server at all.

First create a new empty directory on your PC. It can go anywhere, but in this tutorial we are going to call it C:

\svn_repos. Now right click on the new folder and from the context menu choose TortoiseSVN → Create
Repository here.... The repository is then created inside the folder, ready for you to use. We will also create the
default internal folder structure by clicking the Create folder structure button.

Important

The local repository feature is very useful for test and evaluation but unless you are working as a
sole developer on one PC you should always use a proper Subversion server. It is tempting in a small
company to avoid the work of setting up a server and just access your repository on a network share.
Don't ever do that. You will lose data. Read Section 3.1.4, “Accessing a Repository on a Network
Share” to find out why this is a bad idea, and how to set up a server.

1.3.2. Importing a Project

Now we have a repository, but it is completely empty at the moment. Let's assume I have a set of files in C:
\Projects\Widget1 that I would like to add. Navigate to the Widget1 folder in Explorer and right click on

it. Now select TortoiseSVN → Import... which brings up a dialog

Getting Started

3

Figure 1.2. The Import dialog

A Subversion repository is referred to by URL, which allows us to specify a repository anywhere on the Internet.
In this case we need to point to our own local repository which has a URL of file:///c:/svn_repos/
trunk, and to which we add our own project name Widget1. Note that there are 3 slashes after file: and
that forward slashes are used throughout.

The other important feature of this dialog is the Import Message box which allows you to enter a message
describing what you are doing. When you come to look through your project history, these commit messages are
a valuable guide to what changes have been made and why. In this case we can say something simple like “Import
the Widget1 project”. Click on OK and the folder is added to your repository.

1.3.3. Checking out a Working Copy

Now that we have a project in our repository, we need to create a working copy to use for day-to-day work. Note
that the act of importing a folder does not automatically turn that folder into a working copy. The Subversion term
for creating a fresh working copy is Checkout. We are going to checkout the Widget1 folder of our repository
into a development folder on the PC called C:\Projects\Widget1-Dev. Create that folder, then right click

on it and select TortoiseSVN → Checkout.... Then enter the URL to checkout, in this case file:///c:/
svn_repos/trunk/Widget1 and click on OK. Our development folder is then populated with files from
the repository.

Important

In the default setting, the checkout menu item is not located in the TortoiseSVN submenu but is
shown at the top explorer menu. TortoiseSVN commands that are not in the submenu have SVN
prepended: SVN Checkout...

You will notice that the appearance of this folder is different from our original folder. Every file has a green check
mark in the bottom left corner. These are TortoiseSVN's status icons which are only present in a working copy.
The green state indicates that the file is unchanged from the version in the repository.

Getting Started

4

1.3.4. Making Changes

Time to get to work. In the Widget1-Dev folder we start editing files - let's say we make changes to Widget1.c
and ReadMe.txt. Notice that the icon overlays on these files have now changed to red, indicating that changes
have been made locally.

But what are the changes? Right click on one of the changed files and select TortoiseSVN → Diff. TortoiseSVN's
file compare tool starts, showing you exactly which lines have changed.

Figure 1.3. File Difference Viewer

OK, so we are happy with the changes, let's update the repository. This action is referred to as a Commit of the

changes. Right click on the Widget1-Dev folder and select TortoiseSVN → Commit. The commit dialog lists
the changed files, each with a checkbox. You might want to choose only a subset of those files, but in this case
we are going to commit the changes to both files. Enter up a message to describe what the change is all about and
click on OK. The progress dialog shows the files being uploaded to the repository and you're done.

1.3.5. Adding More Files

As the project develops you will need to add new files - let's say you add some new features in Extras.c and

add a reference in the existing Makefile. Right click on the folder and TortoiseSVN → Add. The Add dialog
now shows you all unversioned files and you can select which ones you want to add. Another way of adding files

would be to right click on the file itself and select TortoiseSVN → Add.

Now when you go to commit the folder, the new file shows up as Added and the existing file as Modified. Note
that you can double click on the modified file to check exactly what changes were made.

1.3.6. Viewing the Project History

One of the most useful features of TortoiseSVN is the Log dialog. This shows you a list of all the commits you
made to a file or folder, and shows those detailed commit messages that you entered (you did enter a commit
message as suggested? If not, now you see why this is important).

Getting Started

5

Figure 1.4. The Log Dialog

OK, so I cheated a little here and used a screenshot from the TortoiseSVN repository.

The top pane shows a list of revisions committed along with the start of the commit message. If you select one of
these revisions, the middle pane will show the full log message for that revision and the bottom pane will show
a list of changed files and folders.

Each of these panes has a context menu which provides you with lots more ways of using the information. In
the bottom pane you can double click on a file to see exactly what changes were made in that revision. Read
Section 4.10, “Revision Log Dialog” to get the full story.

1.3.7. Undoing Changes

One feature of all revision control systems is that they let you undo changes that you made previously. As you
would expect, TortoiseSVN makes this easy to access.

If you want to get rid of changes that you have not yet committed and reset your file to the way it was before you

started editing, TortoiseSVN → Revert is your friend. This discards your changes (to the Recycle bin, just in
case) and reverts to the committed version you started with. If you want to get rid of just some of the changes, you
can use TortoiseMerge to view the differences and selectively revert changed lines.

If you want to undo the effects of a particular revision, start with the Log dialog and find the offending revision.

Select Context Menu → Revert changes from this revision and those changes will be undone.

1.4. Moving On ...

This guide has given you a very quick tour of some of TortoiseSVN's most important and useful features, but of
course there is far more that we haven't covered. We strongly recommend that you take the time to read the rest of
this manual, especially Chapter 4, Daily Use Guide which gives you a lot more detail on day-to-day operations.

Getting Started

6

We have taken a lot of trouble to make sure that it is both informative and easy to read, but we recognise that
there is a lot of it! Take your time and don't be afraid to try things out on a test repository as you go along. The
best way to learn is by using it.

7

Chapter 2. Basic Version-Control
Concepts

This chapter is a slightly modified version of the same chapter in the Subversion book. An online version of the
Subversion book is available here: http://svnbook.red-bean.com/ [http://svnbook.red-bean.com/].

This chapter is a short, casual introduction to Subversion. If you're new to version control, this chapter is definitely
for you. We begin with a discussion of general version control concepts, work our way into the specific ideas
behind Subversion, and show some simple examples of Subversion in use.

Even though the examples in this chapter show people sharing collections of program source code, keep in mind
that Subversion can manage any sort of file collection - it's not limited to helping computer programmers.

2.1. The Repository

Subversion is a centralized system for sharing information. At its core is a repository, which is a central store of
data. The repository stores information in the form of a filesystem tree - a typical hierarchy of files and directories.
Any number of clients connect to the repository, and then read or write to these files. By writing data, a client
makes the information available to others; by reading data, the client receives information from others.

Figure 2.1. A Typical Client/Server System

So why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository
is a kind of file server, but it's not your usual breed. What makes the Subversion repository special is that it
remembers every change ever written to it: every change to every file, and even changes to the directory tree itself,
such as the addition, deletion, and rearrangement of files and directories.

When a client reads data from the repository, it normally sees only the latest version of the filesystem tree. But
the client also has the ability to view previous states of the filesystem. For example, a client can ask historical
questions like, “ what did this directory contain last Wednesday? ”, or “ who was the last person to change this
file, and what changes did they make? ” These are the sorts of questions that are at the heart of any version control
system: systems that are designed to record and track changes to data over time.

2.2. Versioning Models

All version control systems have to solve the same fundamental problem: how will the system allow users to
share information, but prevent them from accidentally stepping on each other's feet? It's all too easy for users to
accidentally overwrite each other's changes in the repository.

2.2.1. The Problem of File-Sharing

Consider this scenario: suppose we have two co-workers, Harry and Sally. They each decide to edit the same
repository file at the same time. If Harry saves his changes to the repository first, then it's possible that (a few

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Basic Version-Control Concepts

8

moments later) Sally could accidentally overwrite them with her own new version of the file. While Harry's version
of the file won't be lost forever (because the system remembers every change), any changes Harry made won't be
present in Sally's newer version of the file, because she never saw Harry's changes to begin with. Harry's work
is still effectively lost - or at least missing from the latest version of the file - and probably by accident. This is
definitely a situation we want to avoid!

Figure 2.2. The Problem to Avoid

2.2.2. The Lock-Modify-Unlock Solution

Many version control systems use a lock-modify-unlock model to address this problem, which is a very simple
solution. In such a system, the repository allows only one person to change a file at a time. First Harry must lock
the file before he can begin making changes to it. Locking a file is a lot like borrowing a book from the library; if
Harry has locked a file, then Sally cannot make any changes to it. If she tries to lock the file, the repository will
deny the request. All she can do is read the file, and wait for Harry to finish his changes and release his lock. After
Harry unlocks the file, his turn is over, and now Sally can take her turn by locking and editing.

Basic Version-Control Concepts

9

Figure 2.3. The Lock-Modify-Unlock Solution

The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a roadblock for
users:

• Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about it.
Meanwhile, because Sally is still waiting to edit the file, her hands are tied. And then Harry goes on vacation.
Now Sally has to get an administrator to release Harry's lock. The situation ends up causing a lot of unnecessary
delay and wasted time.

• Locking may cause unnecessary serialization. What if Harry is editing the beginning of a text file, and Sally
simply wants to edit the end of the same file? These changes don't overlap at all. They could easily edit the file
simultaneously, and no great harm would come, assuming the changes were properly merged together. There's
no need for them to take turns in this situation.

• Locking may create a false sense of security. Pretend that Harry locks and edits file A, while Sally simultaneously
locks and edits file B. But suppose that A and B depend on one another, and the changes made to each are
semantically incompatible. Suddenly A and B don't work together anymore. The locking system was powerless
to prevent the problem - yet it somehow provided a sense of false security. It's easy for Harry and Sally to
imagine that by locking files, each is beginning a safe, insulated task, and thus inhibits them from discussing
their incompatible changes early on.

2.2.3. The Copy-Modify-Merge Solution

Subversion, CVS, and other version control systems use a copy-modify-merge model as an alternative to locking.
In this model, each user's client reads the repository and creates a personal working copy of the file or project.
Users then work in parallel, modifying their private copies. Finally, the private copies are merged together into
a new, final version. The version control system often assists with the merging, but ultimately a human being is
responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the
repository. They work concurrently, and make changes to the same file A within their copies. Sally saves her
changes to the repository first. When Harry attempts to save his changes later, the repository informs him that his

Basic Version-Control Concepts

10

file A is out-of-date. In other words, that file A in the repository has somehow changed since he last copied it.
So Harry asks his client to merge any new changes from the repository into his working copy of file A. Chances
are that Sally's changes don't overlap with his own; so once he has both sets of changes integrated, he saves his
working copy back to the repository.

Figure 2.4. The Copy-Modify-Merge Solution

Figure 2.5. ...Copy-Modify-Merge Continued

Basic Version-Control Concepts

11

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and
it's usually not much of a problem. When Harry asks his client to merge the latest repository changes into his
working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll be able to see both sets of
conflicting changes, and manually choose between them. Note that software can't automatically resolve conflicts;
only humans are capable of understanding and making the necessary intelligent choices. Once Harry has manually
resolved the overlapping changes (perhaps by discussing the conflict with Sally!), he can safely save the merged
file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can
work in parallel, never waiting for one another. When they work on the same files, it turns out that most of their
concurrent changes don't overlap at all; conflicts are infrequent. And the amount of time it takes to resolve conflicts
is far less than the time lost by a locking system.

In the end, it all comes down to one critical factor: user communication. When users communicate poorly, both
syntactic and semantic conflicts increase. No system can force users to communicate perfectly, and no system
can detect semantic conflicts. So there's no point in being lulled into a false promise that a locking system will
somehow prevent conflicts; in practice, locking seems to inhibit productivity more than anything else.

There is one common situation where the lock-modify-unlock model comes out better, and that is where you
have unmergeable files. For example if your repository contains some graphic images, and two people change
the image at the same time, there is no way for those changes to be merged together. Either Harry or Sally will
lose their changes.

2.2.4. What does Subversion Do?

Subversion uses the copy-modify-merge solution by default, and in many cases this is all you will ever need.
However, as of Version 1.2, Subversion also supports file locking, so if you have unmergeable files, or if you are
simply forced into a locking policy by management, Subversion will still provide the features you need.

2.3. Subversion in Action

2.3.1. Working Copies

You've already read about working copies; now we'll demonstrate how the Subversion client creates and uses them.

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files.
You can edit these files however you wish, and if they're source code files, you can compile your program from
them in the usual way. Your working copy is your own private work area: Subversion will never incorporate other
people's changes, nor make your own changes available to others, until you explicitly tell it to do so.

After you've made some changes to the files in your working copy and verified that they work properly, Subversion
provides you with commands to publish your changes to the other people working with you on your project (by
writing to the repository). If other people publish their own changes, Subversion provides you with commands to
merge those changes into your working directory (by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry out these
commands. In particular, your working copy contains a subdirectory named .svn, also known as the working
copy administrative directory . The files in this administrative directory help Subversion recognize which files
contain unpublished changes, and which files are out-of-date with respect to others' work. Prior to 1.7 Subversion
maintained .svn administrative subdirectories in every versioned directory of your working copy. Subversion
1.7 takes a completely different approach and each working copy now has only one administrative subdirectory
which is an immediate child of the root of that working copy.

A typical Subversion repository often holds the files (or source code) for several projects; usually, each project is a
subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy will usually correspond
to a particular subtree of the repository.

For example, suppose you have a repository that contains two software projects.

Basic Version-Control Concepts

12

Figure 2.6. The Repository's Filesystem

In other words, the repository's root directory has two subdirectories: paint and calc.

To get a working copy, you must check out some subtree of the repository. (The term check out may sound like
it has something to do with locking or reserving resources, but it doesn't; it simply creates a private copy of the
project for you.)

Suppose you make changes to button.c. Since the .svn directory remembers the file's modification date and
original contents, Subversion can tell that you've changed the file. However, Subversion does not make your
changes public until you explicitly tell it to. The act of publishing your changes is more commonly known as
committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's commit command.

Now your changes to button.c have been committed to the repository; if another user checks out a working
copy of /calc, they will see your changes in the latest version of the file.

Suppose you have a collaborator, Sally, who checked out a working copy of /calc at the same time you did.
When you commit your change to button.c, Sally's working copy is left unchanged; Subversion only modifies
working copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the Subversion
update command. This will incorporate your changes into her working copy, as well as any others that have been
committed since she checked it out.

Note that Sally didn't need to specify which files to update; Subversion uses the information in the .svn directory,
and further information in the repository, to decide which files need to be brought up to date.

2.3.2. Repository URLs

Subversion repositories can be accessed through many different methods - on local disk, or through various
network protocols. A repository location, however, is always a URL. The URL schema indicates the access
method:

Schema Access Method

file:// Direct repository access on local or network drive.

Basic Version-Control Concepts

13

Schema Access Method

http:// Access via WebDAV protocol to Subversion-aware Apache server.

https:// Same as http://, but with SSL encryption.

svn:// Unauthenticated TCP/IP access via custom protocol to a svnserve server.

svn+ssh:// authenticated, encrypted TCP/IP access via custom protocol to a svnserve
server.

Table 2.1. Repository Access URLs

For the most part, Subversion's URLs use the standard syntax, allowing for server names and port numbers to be
specified as part of the URL. The file:// access method is normally used for local access, although it can be
used with UNC paths to a networked host. The URL therefore takes the form file://hostname/path/to/
repos. For the local machine, the hostname portion of the URL is required to be either absent or localhost.
For this reason, local paths normally appear with three slashes, file:///path/to/repos.

Also, users of the file:// scheme on Windows platforms will need to use an unofficially “standard” syntax for
accessing repositories that are on the same machine, but on a different drive than the client's current working drive.
Either of the two following URL path syntaxes will work where X is the drive on which the repository resides:

file:///X:/path/to/repos
...
file:///X|/path/to/repos
...

Note that a URL uses ordinary slashes even though the native (non-URL) form of a path on Windows uses
backslashes.

You can access a FSFS repository via a network share, but this is not recommended for various reasons:

• You are giving direct write access to all users, so they could accidentally delete or corrupt the repository file
system.

• Not all network file sharing protocols support the locking that Subversion requires. One day you will find your
repository has been subtly corrupted.

• You have to set the access permissions in just the right way. SAMBA is particularly difficult in this respect.

• If one person installs a newer version of the client which upgrades the repository format, then everyone else
will be unable to access the repository until they also upgrade to the new client version.

2.3.3. Revisions

A svn commit operation can publish changes to any number of files and directories as a single atomic transaction.
In your working copy, you can change files' contents, create, delete, rename and copy files and directories, and
then commit the complete set of changes as a unit.

In the repository, each commit is treated as an atomic transaction: either all the commits changes take place, or
none of them take place. Subversion retains this atomicity in the face of program crashes, system crashes, network
problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision. Each
revision is assigned a unique natural number, one greater than the number of the previous revision. The initial
revision of a freshly created repository is numbered zero, and consists of nothing but an empty root directory.

A nice way to visualize the repository is as a series of trees. Imagine an array of revision numbers, starting at
0, stretching from left to right. Each revision number has a filesystem tree hanging below it, and each tree is a
“snapshot” of the way the repository looked after each commit.

Basic Version-Control Concepts

14

Figure 2.7. The Repository

Global Revision Numbers

Unlike those of many other version control systems, Subversion's revision numbers apply to entire trees ,
not individual files. Each revision number selects an entire tree, a particular state of the repository after some
committed change. Another way to think about it is that revision N represents the state of the repository
filesystem after the Nth commit. When a Subversion user talks about ``revision 5 of foo.c'', they really
mean ``foo.c as it appears in revision 5.'' Notice that in general, revisions N and M of a file do not
necessarily differ!

It's important to note that working copies do not always correspond to any single revision in the repository; they
may contain files from several different revisions. For example, suppose you check out a working copy from a
repository whose most recent revision is 4:

calc/Makefile:4
integer.c:4
button.c:4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However, suppose
you make a change to button.c, and commit that change. Assuming no other commits have taken place, your
commit will create revision 5 of the repository, and your working copy will now look like this:

calc/Makefile:4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits a change to integer.c, creating revision 6. If you use svn update
to bring your working copy up to date, then it will look like this:

calc/Makefile:6
integer.c:6
button.c:6

Basic Version-Control Concepts

15

Sally's changes to integer.c will appear in your working copy, and your change will still be present in
button.c. In this example, the text of Makefile is identical in revisions 4, 5, and 6, but Subversion will mark
your working copy of Makefile with revision 6 to indicate that it is still current. So, after you do a clean update
at the top of your working copy, it will generally correspond to exactly one revision in the repository.

2.3.4. How Working Copies Track the Repository

For each file in a working directory, Subversion records two essential pieces of information in the .svn/
administrative area:

• what revision your working file is based on (this is called the file's working revision), and

• a timestamp recording when the local copy was last updated by the repository.

Given this information, by talking to the repository, Subversion can tell which of the following four states a
working file is in:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to the
repository since its working revision. A commit of the file will do nothing, and an update of the file will
do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been committed to the
repository since its base revision. There are local changes that have not been committed to the repository, thus
a commit of the file will succeed in publishing your changes, and an update of the file will do nothing.

Unchanged, and out-of-date
The file has not been changed in the working directory, but it has been changed in the repository. The file
should eventually be updated, to make it current with the public revision. A commit of the file will do nothing,
and an update of the file will fold the latest changes into your working copy.

Locally changed, and out-of-date
The file has been changed both in the working directory, and in the repository. A commit of the file will fail
with an out-of-date error. The file should be updated first; an update command will attempt to merge the public
changes with the local changes. If Subversion can't complete the merge in a plausible way automatically, it
leaves it to the user to resolve the conflict.

2.4. Summary

We've covered a number of fundamental Subversion concepts in this chapter:

• We've introduced the notions of the central repository, the client working copy, and the array of repository
revision trees.

• We've seen some simple examples of how two collaborators can use Subversion to publish and receive changes
from one another, using the 'copy-modify-merge' model.

• We've talked a bit about the way Subversion tracks and manages information in a working copy.

16

Chapter 3. The Repository
No matter which protocol you use to access your repositories, you always need to create at least one repository.
This can either be done with the Subversion command line client or with TortoiseSVN.

If you haven't created a Subversion repository yet, it's time to do that now.

3.1. Repository Creation

3.1.1. Creating a Repository with the Command Line Client

1. Create an empty folder with the name SVN (e.g. D:\SVN\), which is used as root for all your repositories.

2. Create another folder MyNewRepository inside D:\SVN\.

3. Open the command prompt (or DOS-Box), change into D:\SVN\ and type

svnadmin create --fs-type fsfs MyNewRepository

Now you've got a new repository located at D:\SVN\MyNewRepository.

3.1.2. Creating The Repository With TortoiseSVN

Figure 3.1. The TortoiseSVN menu for unversioned folders

1. Open the windows explorer

2. Create a new folder and name it e.g. SVNRepository

3. Right click on the newly created folder and select TortoiseSVN → Create Repository here....

A repository is then created inside the new folder. Don't edit those files yourself!!!. If you get any errors make
sure that the folder is empty and not write protected.

You will also be asked whether you want to create a directory structure within the repository. Find out about
layout options in Section 3.1.5, “Repository Layout”.

TortoiseSVN will set a custom folder icon when it creates a repository so you can identify local repositories
more easily. If you create a repository using the official command line client this folder icon is not assigned.

The Repository

17

Tip

We also recommend that you don't use file:// access at all, apart from local testing purposes.
Using a server is more secure and more reliable for all but single-developer use.

3.1.3. Local Access to the Repository

To access your local repository you need the path to that folder. Just remember that Subversion expects all
repository paths in the form file:///C:/SVNRepository/. Note the use of forward slashes throughout.

To access a repository located on a network share you can either use drive mapping, or you can use the UNC path.
For UNC paths, the form is file://ServerName/path/to/repos/. Note that there are only 2 leading
slashes here.

Prior to SVN 1.2, UNC paths had to be given in the more obscure form file:///\ServerName/path/to/
repos. This form is still supported, but not recommended.

3.1.4. Accessing a Repository on a Network Share

Although in theory it is possible to put a FSFS repository on a network share and have multiple users access it
using file:// protocol, this is most definitely not recommended. In fact we would strongly discourage it, and
do not support such use for various reasons:

• Firstly you are giving every user direct write access to the repository, so any user could accidentally delete the
entire repository or make it unusable in some other way.

• Secondly not all network file sharing protocols support the locking that Subversion requires, so you may find
your repository gets corrupted. It may not happen straight away, but one day two users will try to access the
repository at the same time.

• Thirdly the file permissions have to be set just so. You may just about get away with it on a native Windows
share, but SAMBA is particularly difficult.

• If one person installs a newer version of the client which upgrades the repository format, then everyone else
will be unable to access the repository until they also upgrade to the new client version.

file:// access is intended for local, single-user access only, particularly testing and debugging. When you want
to share the repository you really need to set up a proper server, and it is not nearly as difficult as you might think.
Read Section 3.5, “Accessing the Repository” for guidelines on choosing and setting up a server.

3.1.5. Repository Layout

Before you import your data into the repository you should first think about how you want to organize your data.
If you use one of the recommended layouts you will later have it much easier.

There are some standard, recommended ways to organize a repository. Most people create a trunk directory to
hold the “main line” of development, a branches directory to contain branch copies, and a tags directory to
contain tag copies. If a repository holds only one project, then often people create these top-level directories:

/trunk
/branches
/tags

Because this layout is so commonly used, when you create a new repository using TortoiseSVN, it will also offer
to create the directory structure for you.

If a repository contains multiple projects, people often index their layout by branch:

The Repository

18

/trunk/paint
/trunk/calc
/branches/paint
/branches/calc
/tags/paint
/tags/calc

...or by project:

/paint/trunk
/paint/branches
/paint/tags
/calc/trunk
/calc/branches
/calc/tags

Indexing by project makes sense if the projects are not closely related and each one is checked out individually.
For related projects where you may want to check out all projects in one go, or where the projects are all tied
together in a single distribution package, it is often better to index by branch. This way you have only one trunk
to checkout, and the relationships between the sub-projects is more easily visible.

If you adopt a top level /trunk /tags /branches approach, there is nothing to say that you have to copy
the entire trunk for every branch and tag, and in some ways this structure offers the most flexibility.

For unrelated projects you may prefer to use separate repositories. When you commit changes, it is the revision
number of the whole repository which changes, not the revision number of the project. Having 2 unrelated projects
share a repository can mean large gaps in the revision numbers. The Subversion and TortoiseSVN projects appear
at the same host address, but are completely separate repositories allowing independent development, and no
confusion over build numbers.

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever works best
for you or your team. Remember that whatever you choose, it's not a permanent commitment. You can reorganize
your repository at any time. Because branches and tags are ordinary directories, TortoiseSVN can move or rename
them however you wish.

Switching from one layout to another is just a matter of issuing a series of server-side moves; If you don't like the
way things are organized in the repository, just juggle the directories around.

So if you haven't already created a basic folder structure inside your repository you should do that now. There
are two ways to achieve this. If you simply want to create a /trunk /tags /branches structure, you can
use the repository browser to create the three folders (in three separate commits). If you want to create a deeper
hierarchy then it is simpler to create a folder structure on disk first and import it in a single commit, like this:

1. create a new empty folder on your hard drive

2. create your desired top-level folder structure inside that folder - don't put any files in it yet!

3. import this structure into the repository via a right click on the folder that contains this folder structure and

selecting TortoiseSVN → Import... In the import dialog enter the URL to your repository and click OK. This
will import your temp folder into the repository root to create the basic repository layout.

Note that the name of the folder you are importing does not appear in the repository, only its contents. For example,
create the following folder structure:

C:\Temp\New\trunk

The Repository

19

C:\Temp\New\branches
C:\Temp\New\tags

Import C:\Temp\New into the repository root, which will then look like this:

/trunk
/branches
/tags

3.2. Repository Backup

Whichever type of repository you use, it is vitally important that you maintain regular backups, and that you verify
the backup. If the server fails, you may be able to access a recent version of your files, but without the repository
all your history is lost forever.

The simplest (but not recommended) way is just to copy the repository folder onto the backup medium. However,
you have to be absolutely sure that no process is accessing the data. In this context, access means any access at
all. If your repository is accessed at all during the copy, (web browser left open, WebSVN, etc.) the backup will
be worthless.

The recommended method is to run

svnadmin hotcopy path/to/repository path/to/backup

to create a copy of your repository in a safe manner. Then backup the copy.

The svnadmin tool is installed automatically when you install the Subversion command line client. The easiest
way to get this is to check the option to include the command line tools when installing TortoiseSVN, but if
you prefer you can download the latest version of command line tools directly from the Subversion [https://
subversion.apache.org/packages.html#windows] website.

3.3. Server side hook scripts

A hook script is a program triggered by some repository event, such as the creation of a new revision
or the modification of an unversioned property. Each hook is handed enough information to tell what
that event is, what target(s) it's operating on, and the username of the person who triggered the event.
Depending on the hook's output or return status, the hook program may continue the action, stop it, or
suspend it in some way. Please refer to the chapter on Hook Scripts [http://svnbook.red-bean.com/en/1.8/
svn.reposadmin.create.html#svn.reposadmin.create.hooks] in the Subversion Book for full details about the hooks
which are implemented.

These hook scripts are executed by the server that hosts the repository. TortoiseSVN also allows you to configure
client side hook scripts that are executed locally upon certain events. See Section 4.31.8, “Client Side Hook Scripts”
for more information.

Sample hook scripts can be found in the hooks directory of the repository. These sample scripts are suitable for
Unix/Linux servers but need to be modified if your server is Windows based. The hook can be a batch file or an
executable. The sample below shows a batch file which might be used to implement a pre-revprop-change hook.

rem Only allow log messages to be changed.
if "%4" == "svn:log" exit 0
echo Property '%4' cannot be changed >&2
exit 1

https://subversion.apache.org/packages.html#windows
https://subversion.apache.org/packages.html#windows
https://subversion.apache.org/packages.html#windows
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.create.hooks

The Repository

20

Note that anything sent to stdout is discarded. If you want a message to appear in the Commit Reject dialog you
must send it to stderr. In a batch file this is achieved using >&2.

Overriding Hooks

If a hook script rejects your commit then its decision is final. But you can build an override
mechanism into the script itself using the Magic Word technique. If the script wants to reject the
operation it first scans the log message for a special pass phrase, either a fixed phrase or perhaps the
filename with a prefix. If it finds the magic word then it allows the commit to proceed. If the phrase
is not found then it can block the commit with a message like “You didn't say the magic word”. :-)

3.4. Checkout Links

If you want to make your Subversion repository available to others you may want to include a link to it from your
website. One way to make this more accessible is to include a checkout link for other TortoiseSVN users.

When you install TortoiseSVN, it registers a new tsvn: protocol. When a TortoiseSVN user clicks on such a
link, the checkout dialog will open automatically with the repository URL already filled in.

To include such a link in your own html page, you need to add code which looks something like this:

Of course it would look even better if you included a suitable picture. You can use the TortoiseSVN logo [https://
tortoisesvn.net/images/TortoiseCheckout.png] or you can provide your own image.

You can also make the link point to a specific revision, for example

3.5. Accessing the Repository

To use TortoiseSVN (or any other Subversion client), you need a place where your repositories are located. You
can either store your repositories locally and access them using the file:// protocol or you can place them on a
server and access them with the http:// or svn:// protocols. The two server protocols can also be encrypted.
You use https:// or svn+ssh://, or you can use svn:// with SASL.

If you are using a public hosting service such as SourceForge [https://sourceforge.net] or your server has already
been setup by someone else then there is nothing else you need to do. Move along to Chapter 4, Daily Use Guide.

If you don't have a server and you work alone, or if you are just evaluating Subversion and TortoiseSVN in
isolation, then local repositories are probably your best choice. Just create a repository on your own PC as described
earlier in Chapter 3, The Repository. You can skip the rest of this chapter and go directly to Chapter 4, Daily Use
Guide to find out how to start using it.

If you were thinking about setting up a multi-user repository on a network share, think again. Read Section 3.1.4,
“Accessing a Repository on a Network Share” to find out why we think this is a bad idea. Setting up a server is
not as hard as it sounds, and will give you better reliability and probably speed too.

https://tortoisesvn.net/images/TortoiseCheckout.png
https://tortoisesvn.net/images/TortoiseCheckout.png
https://tortoisesvn.net/images/TortoiseCheckout.png
https://sourceforge.net
https://sourceforge.net

The Repository

21

More detailed information on the Subversion server options, and how to choose the best architecture for your
situation, can be found in the Subversion book under Server Configuration [http://svnbook.red-bean.com/en/1.8/
svn.serverconfig.html].

In the early days of Subversion, setting up a server required a good understanding of server configuration and in
previous versions of this manual we included detailed descriptions of how to set up a server. Since then things
have become easier as there are now several pre-packaged server installers available which guide you through the
setup and configuration process. These links are for some of the installers we know about:

• VisualSVN [https://www.visualsvn.com/server/]

• CollabNet [https://www.collab.net/products/subversion]

You can always find the latest links on the Subversion [https://subversion.apache.org/packages.html] website.

You can find further How To guides on the TortoiseSVN [https://tortoisesvn.net/usefultips.html] website.

http://svnbook.red-bean.com/en/1.8/svn.serverconfig.html
http://svnbook.red-bean.com/en/1.8/svn.serverconfig.html
http://svnbook.red-bean.com/en/1.8/svn.serverconfig.html
https://www.visualsvn.com/server/
https://www.visualsvn.com/server/
https://www.collab.net/products/subversion
https://www.collab.net/products/subversion
https://subversion.apache.org/packages.html
https://subversion.apache.org/packages.html
https://tortoisesvn.net/usefultips.html
https://tortoisesvn.net/usefultips.html

22

Chapter 4. Daily Use Guide
This document describes day to day usage of the TortoiseSVN client. It is not an introduction to version control
systems, and not an introduction to Subversion (SVN). It is more like a place you may turn to when you know
approximately what you want to do, but don't quite remember how to do it.

If you need an introduction to version control with Subversion, then we recommend you read the fantastic book:
Version Control with Subversion [http://svnbook.red-bean.com/].

This document is also a work in progress, just as TortoiseSVN and Subversion are. If you find any mistakes, please
report them to the mailing list so we can update the documentation. Some of the screenshots in the Daily Use
Guide (DUG) might not reflect the current state of the software. Please forgive us. We're working on TortoiseSVN
in our free time.

In order to get the most out of the Daily Use Guide:

• You should have installed TortoiseSVN already.

• You should be familiar with version control systems.

• You should know the basics of Subversion.

• You should have set up a server and/or have access to a Subversion repository.

4.1. General Features

This section describes some of the features of TortoiseSVN which apply to just about everything in the manual.
Note that many of these features will only show up within a Subversion working copy.

4.1.1. Icon Overlays

Figure 4.1. Explorer showing icon overlays

One of the most visible features of TortoiseSVN is the icon overlays which appear on files in your working copy.
These show you at a glance which of your files have been modified. Refer to Section 4.7.1, “Icon Overlays” to
find out what the different overlays represent.

4.1.2. Context Menus

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Daily Use Guide

23

Figure 4.2. Context menu for a directory under version control

All TortoiseSVN commands are invoked from the context menu of the windows explorer. Most are directly visible,
when you right click on a file or folder. The commands that are available depend on whether the file or folder or
its parent folder is under version control or not. You can also see the TortoiseSVN menu as part of the Explorer
file menu.

Tip

Some commands which are very rarely used are only available in the extended context menu. To
bring up the extended context menu, hold down the Shift key when you right click.

In some cases you may see several TortoiseSVN entries. This is not a bug!

Daily Use Guide

24

Figure 4.3. Explorer file menu for a shortcut in a versioned folder

This example is for an unversioned shortcut within a versioned folder, and in the Explorer file menu there are three
entries for TortoiseSVN. One is for the folder, one for the shortcut itself, and the third for the object the shortcut
is pointing to. To help you distinguish between them, the icons have an indicator in the lower right corner to show
whether the menu entry is for a file, a folder, a shortcut or for multiple selected items.

4.1.3. Drag and Drop

Figure 4.4. Right drag menu for a directory under version control

Other commands are available as drag handlers, when you right drag files or folders to a new location inside
working copies or when you right drag a non-versioned file or folder into a directory which is under version control.

Daily Use Guide

25

4.1.4. Common Shortcuts

Some common operations have well-known Windows shortcuts, but do not appear on buttons or in menus. If you
can't work out how to do something obvious, like refreshing a view, check here.

F1
Help, of course.

F5
Refresh the current view. This is perhaps the single most useful one-key command. For example ... In Explorer
this will refresh the icon overlays on your working copy. In the commit dialog it will re-scan the working
copy to see what may need to be committed. In the Revision Log dialog it will contact the repository again
to check for more recent changes.

Ctrl-A
Select all. This can be used if you get an error message and want to copy and paste into an email. Use Ctrl-
A to select the error message and then ...

Ctrl-C
Copy the selected text. In case no text is selected but e.g. a list entry or a message box, then the content of
that list entry or the message box is copied to the clipboard.

4.1.5. Authentication

If the repository that you are trying to access is password protected, an authentication Dialog will show up.

Figure 4.5. Authentication Dialog

Enter your username and password. The checkbox will make TortoiseSVN store the credentials in Subversion's
default directory: %APPDATA%\Subversion\auth in three subdirectories:

• svn.simple contains credentials for basic authentication (username/password). Note that passwords are
stored using the WinCrypt API, not in plain text form.

• svn.ssl.server contains SSL server certificates.

• svn.username contains credentials for username-only authentication (no password needed).

If you want to clear the authentication cache, you can do so from the Saved Data page of TortoiseSVN's settings
dialog. The button Clear all will clear the cached authentication data for all repositories. The button Clear...

Daily Use Guide

26

however will show a dialog where you can chose which cached authentication data should be deleted. Refer to
Section 4.31.6, “Saved Data Settings”.

Some people like to have the authentication data deleted when they log off Windows, or on shutdown. The way
to do that is to use a shutdown script to delete the %APPDATA%\Subversion\auth directory, e.g.

@echo off
rmdir /s /q "%APPDATA%\Subversion\auth"

You can find a description of how to install such scripts at http://www.windows-help-central.com/windows-
shutdown-script.html [http://www.windows-help-central.com/windows-shutdown-script.html].

For more information on how to set up your server for authentication and access control, refer to Section 3.5,
“Accessing the Repository”.

4.1.6. Maximizing Windows

Many of TortoiseSVN's dialogs have a lot of information to display, but it is often useful to maximize only the
height, or only the width, rather than maximizing to fill the screen. As a convenience, there are shortcuts for
this on the Maximize button. Use the middle mouse button to maximize vertically, and right mouse to maximize
horizontally.

4.2. Importing Data Into A Repository

4.2.1. Import

If you are importing into an existing repository which already contains some projects, then the repository structure
will already have been decided. If you are importing data into a new repository, then it is worth taking the time to
think about how it will be organised. Read Section 3.1.5, “Repository Layout” for further advice.

This section describes the Subversion import command, which was designed for importing a directory hierarchy
into the repository in one shot. Although it does the job, it has several shortcomings:

• There is no way to select files and folders to include, aside from using the global ignore settings.

• The folder imported does not become a working copy. You have to do a checkout to copy the files back from
the server.

• It is easy to import to the wrong folder level in the repository.

For these reasons we recommend that you do not use the import command at all but rather follow the two-step
method described in Section 4.2.2, “Import in Place”, unless you are performing the simple step of creating an
initial /trunk /tags /branches structure in your repository. Since you are here, this is how the basic
import works ...

Before you import your project into a repository you should:

1. Remove all files which are not needed to build the project (temporary files, files which are generated by a
compiler e.g. *.obj, compiled binaries, ...)

2. Organize the files in folders and sub-folders. Although it is possible to rename/move files later it is highly
recommended to get your project's structure straight before importing!

Now select the top-level folder of your project directory structure in the windows explorer and right click to open

the context menu. Select the command TortoiseSVN → Import... which brings up a dialog box:

http://www.windows-help-central.com/windows-shutdown-script.html
http://www.windows-help-central.com/windows-shutdown-script.html
http://www.windows-help-central.com/windows-shutdown-script.html

Daily Use Guide

27

Figure 4.6. The Import dialog

In this dialog you have to enter the URL of the repository location where you want to import your project. It is
very important to realise that the local folder you are importing does not itself appear in the repository, only its
content. For example if you have a structure:

C:\Projects\Widget\source
C:\Projects\Widget\doc
C:\Projects\Widget\images

and you import C:\Projects\Widget into http://mydomain.com/svn/trunk then you may be
surprised to find that your subdirectories go straight into trunk rather than being in a Widget subdirectory.
You need to specify the subdirectory as part of the URL, http://mydomain.com/svn/trunk/Widget-
X. Note that the import command will automatically create subdirectories within the repository if they do not exist.

The import message is used as a log message.

By default, files and folders which match the global-ignore patterns are not imported. To override this behaviour
you can use the Include ignored files checkbox. Refer to Section 4.31.1, “General Settings” for more information
on setting a global ignore pattern.

As soon as you press OK TortoiseSVN imports the complete directory tree including all files into the repository.
The project is now stored in the repository under version control. Please note that the folder you imported is NOT
under version control! To get a version-controlled working copy you need to do a Checkout of the version you just
imported. Or read on to find out how to import a folder in place.

4.2.2. Import in Place

Assuming you already have a repository, and you want to add a new folder structure to it, just follow these steps:

1. Use the repository browser to create a new project folder directly in the repository. If you are using one of
the standard layouts you will probably want to create this as a sub-folder of trunk rather than in the repository
root. The repository browser shows the repository structure just like Windows explorer, so you can see how
things are organised.

Daily Use Guide

28

2. Checkout the new folder over the top of the folder you want to import. You will get a warning that the local
folder is not empty. Ignore the warning. Now you have a versioned top level folder with unversioned content.

3. Use TortoiseSVN → Add... on this versioned folder to add some or all of the content. You can add and remove
files, set svn:ignore properties on folders and make any other changes you need to.

4. Commit the top level folder, and you have a new versioned tree, and a local working copy, created from your
existing folder.

4.2.3. Special Files

Sometimes you need to have a file under version control which contains user specific data. That means you have
a file which every developer/user needs to modify to suit his/her local setup. But versioning such a file is difficult
because every user would commit his/her changes every time to the repository.

In such cases we suggest to use template files. You create a file which contains all the data your developers will
need, add that file to version control and let the developers check this file out. Then, each developer has to make
a copy of that file and rename that copy. After that, modifying the copy is not a problem anymore.

As an example, you can have a look at TortoiseSVN's build script. It calls a file named
default.build.user which doesn't exist in the repository. Only the file default.build.user.tmpl.
default.build.user.tmpl is the template file which every developer has to create a copy from and rename
that file to default.build.user. Inside that file, we added comments so that the users will see which lines
they have to edit and change according to their local setup to get it working.

So as not to disturb the users, we also added the file default.build.user to the ignore list of its parent
folder, i.e. we've set the Subversion property svn:ignore to include that filename. That way it won't show up
as unversioned on every commit.

4.3. Checking Out A Working Copy

To obtain a working copy you need to do a checkout from a repository.

Select a directory in windows explorer where you want to place your working copy. Right click to pop up the

context menu and select the command TortoiseSVN → Checkout..., which brings up the following dialog box:

Daily Use Guide

29

Figure 4.7. The Checkout dialog

If you enter a folder name that does not yet exist, then a directory with that name is created.

Important

In the default setting, the checkout menu item is not located in the TortoiseSVN submenu but is
shown at the top explorer menu. TortoiseSVN commands that are not in the submenu have SVN
prepended: SVN Checkout...

4.3.1. Checkout Depth

You can choose the depth you want to checkout, which allows you to specify the depth of recursion into child
folders. If you want just a few sections of a large tree, You can checkout the top level folder only, then update
selected folders recursively.

Fully recursive
Checkout the entire tree, including all child folders and sub-folders.

Immediate children, including folders
Checkout the specified directory, including all files and child folders, but do not populate the child folders.

Only file children
Checkout the specified directory, including all files but do not checkout any child folders.

Only this item
Checkout the directory only. Do not populate it with files or child folders.

Working copy
Retain the depth specified in the working copy. This option is not used in the checkout dialog, but it is the
default in all other dialogs which have a depth setting.

Daily Use Guide

30

Exclude
Used to reduce working copy depth after a folder has already been populated. This option is only available
in the Update to revision dialog.

To easily select only the items you want for the checkout and force the resulting working copy to keep only those
items, click the Choose items... button. This opens a new dialog where you can check all items you want in your
working copy and uncheck all the items you don't want. The resulting working copy is then known as a sparse
checkout. An update of such a working copy will not fetch the missing files and folders but only update what
you already have in your working copy.

If you check out a sparse working copy (i.e., by choosing something other than fully recursive for the
checkout depth), you can easily add or remove sub-folders later using one of the following methods.

4.3.1.1. Sparse Update using Update to Revision

Right click on the checked out folder, then use TortoiseSVN → Update to Revision and select Choose items....
This opens the same dialog that was available in the original checkout and allows you to select or deselect items
to include in the checkout. This method is very flexible but can be slow as every item in the folder is updated
individually.

4.3.1.2. Sparse Update using Repo Browser

Right click on the checked out folder, then use TortoiseSVN → Repo-Browser to bring up the repository

browser. Find the sub-folder you would like to add to your working copy, then use Context Menu → Update
item to revision....

4.3.1.3. Sparse Update using Check for Modifications

In the check for modifications dialog, first shift click on the button Check repository. The dialog will show all
the files and folders which are in the repository but which you have not checked out as remotely added. Right

click on the folder(s) you would like to add to your working copy, then use Context menu → Update.

This feature is very useful when you only want to checkout parts of a large tree, but you want the convenience
of updating a single working copy. Suppose you have a large tree which has sub-folders Project01 to
Project99, and you only want to checkout Project03, Project25 and Project76/SubProj. Use
these steps:

1. Checkout the parent folder with depth “Only this item” You now have an empty top level folder.

2. Select the new folder and use TortoiseSVN → Repo browser to display the repository content.

3. Right click on Project03 and Context menu → Update item to revision.... Keep the default settings and
click on OK. You now have that folder fully populated.

Repeat the same process for Project25.

4. Navigate to Project76/SubProj and do the same. This time note that the Project76 folder has no
content except for SubProj, which itself is fully populated. Subversion has created the intermediate folders
for you without populating them.

Changing working copy depth

Once you have checked out a working copy to a particular depth you can change that depth later to

get more or less content using Context menu → Update item to revision.... In that dialog, be sure
to check the Make depth sticky checkbox.

Daily Use Guide

31

Using an older server

Pre-1.5 servers do not understand the working copy depth request, so they cannot always deal with
requests efficiently. The command will still work, but an older server may send all the data, leaving
the client to filter out what is not required, which may mean a lot of network traffic. If possible you
should upgrade your server to at least 1.5.

If the project contains references to external projects which you do not want checked out at the same time, use
the Omit externals checkbox.

Important

If Omit externals is checked, or if you wish to increase the depth value, you will have to

perform updates to your working copy using TortoiseSVN → Update to Revision... instead of

TortoiseSVN → Update. The standard update will include all externals and keep the existing depth.

It is recommended that you check out only the trunk part of the directory tree, or lower. If you specify the parent
path of the directory tree in the URL then you might end up with a full hard disk since you will get a copy of the
entire repository tree including every branch and tag of your project!

Exporting

Sometimes you may want to create a local copy without any of those .svn directories, e.g. to create
a zipped tarball of your source. Read Section 4.27, “Exporting a Subversion Working Copy” to find
out how to do that.

4.4. Committing Your Changes To The Repository

Sending the changes you made to your working copy is known as committing the changes. But before you commit

you have to make sure that your working copy is up to date. You can either use TortoiseSVN → Update directly.

Or you can use TortoiseSVN → Check for Modifications first, to see which files have changed locally or on
the server.

4.4.1. The Commit Dialog

If your working copy is up to date and there are no conflicts, you are ready to commit your changes. Select any

file and/or folders you want to commit, then TortoiseSVN → Commit....

Daily Use Guide

32

Figure 4.8. The Commit dialog

The commit dialog will show you every changed file, including added, deleted and unversioned files. If you don't
want a changed file to be committed, just uncheck that file. If you want to include an unversioned file, just check
that file to add it to the commit.

To quickly check or uncheck types of files like all versioned files or all modified files, click the link items just
above the list of shown items.

For information on the coloring and overlays of the items according to their status, please see Section 4.7.3, “Local
and Remote Status”.

Items which have been switched to a different repository path are also indicated using an (s) marker. You may
have switched something while working on a branch and forgotten to switch back to trunk. This is your warning
sign!

Daily Use Guide

33

Commit files or folders?

When you commit files, the commit dialog shows only the files you have selected. When you commit
a folder the commit dialog will select the changed files automatically. If you forget about a new file
you created, committing the folder will find it anyway. Committing a folder does not mean that every
file gets marked as changed; It just makes your life easier by doing more work for you.

Many unversioned files in the commit dialog

If you think that the commit dialog shows you too many unversioned (e.g. compiler generated or
editor backup) files, there are several ways to handle this. You can:

• add the file (or a wildcard extension) to the list of files to exclude on the settings page. This will
affect every working copy you have.

• add the file to the svn:ignore list using TortoiseSVN → Add to ignore list This will only
affect the directory on which you set the svn:ignore property. Using the SVN Property Dialog,
you can alter the svn:ignore property for a directory.

• add the file to the svn:global-ignores list using TortoiseSVN → Add to ignore list
(recursively) This will affect the directory on which you set the svn:global-ignores
property and all subfolders as well.

Read Section 4.14, “Ignoring Files And Directories” for more information.

Double clicking on any modified file in the commit dialog will launch the external diff tool to show your changes.
The context menu will give you more options, as shown in the screenshot. You can also drag files from here into
another application such as a text editor or an IDE.

You can select or deselect items by clicking on the checkbox to the left of the item. For directories you can use
Shift-select to make the action recursive.

The columns displayed in the bottom pane are customizable. If you right click on any column header you will
see a context menu allowing you to select which columns are displayed. You can also change column width by
using the drag handle which appears when you move the mouse over a column boundary. These customizations
are preserved, so you will see the same headings next time.

By default when you commit changes, any locks that you hold on files are released automatically after the commit
succeeds. If you want to keep those locks, make sure the Keep locks checkbox is checked. The default state of
this checkbox is taken from the no_unlock option in the Subversion configuration file. Read Section 4.31.1,
“General Settings” for information on how to edit the Subversion configuration file.

Warning when committing to a tag

Usually, commits are done to the trunk or a branch, but not to tags. After all, a tag is considered
fixed and should not change.

If a commit is attempted to a tag URL, TortoiseSVN shows a confirmation dialog first to ensure
whether this is really what is intended. Because most of the time such a commit is done by accident.

However, this check only works if the repository layout is one of the recommended ones, meaning
it uses the names trunk, branches and tags to mark the three main areas. In case the
setup is different, the detection of what is a tag/branch/trunk (also known as classification
patterns), can be configured in the settings dialog: Section 4.31.2, “Revision Graph Settings”

Daily Use Guide

34

Drag and Drop

You can drag files into the commit dialog from elsewhere, so long as the working copies are checked
out from the same repository. For example, you may have a huge working copy with several explorer
windows open to look at distant folders of the hierarchy. If you want to avoid committing from the
top level folder (with a lengthy folder crawl to check for changes) you can open the commit dialog
for one folder and drag in items from the other windows to include within the same atomic commit.

You can drag unversioned files which reside within a working copy into the commit dialog, and they
will be SVN added automatically.

Dragging files from the list at the bottom of the commit dialog to the log message edit box will insert
the paths as plain text into that edit box. This is useful if you want to write commit log messages that
include the paths that are affected by the commit.

Repairing External Renames

Sometimes files get renamed outside of Subversion, and they show up in the file list as a missing
file and an unversioned file. To avoid losing the history you need to notify Subversion about the
connection. Simply select both the old name (missing) and the new name (unversioned) and use

Context Menu → Repair Move to pair the two files as a rename.

Repairing External Copies

If you made a copy of a file but forgot to use the Subversion command to do so, you can repair that
copy so the new file doesn't lose its history. Simply select both the old name (normal or modified) and

the new name (unversioned) and use Context Menu → Repair Copy to pair the two files as a copy.

4.4.2. Change Lists

The commit dialog supports Subversion's changelist feature to help with grouping related files together. Find out
about this feature in Section 4.8, “Change Lists”.

4.4.3. Commit only parts of files

Sometimes you want to only commit parts of the changes you made to a file. Such a situation usually happens
when you're working on something but then an urgent fix needs to be committed, and that fix happens to be in
the same file you're working on.

right click on the file and use Context Menu → Restore after commit. This will create a copy of the file as it
is. Then you can edit the file, e.g. in a text editor and undo all the changes you don't want to commit. After saving
those changes you can commit the file.

Using TortoiseMerge

If you use TortoiseMerge to edit the file, you can either edit the changes as you're used to, or mark
all the changes that you want to include. right click on a modified block and use Context Menu

→ Mark this change to include that change. Finally right click and use Context Menu → Leave
only marked changes which will change the right view to only include the changes you've marked
before and undo the changes you have not marked.

After the commit is done, the copy of the file is restored automatically, and you have the file with all your
modifications that were not committed back.

Daily Use Guide

35

4.4.4. Excluding Items from the Commit List

Sometimes you have versioned files that change frequently but that you really don't want to commit. Sometimes
this indicates a flaw in your build process - why are those files versioned? should you be using template files?
But occasionally it is inevitable. A classic reason is that your IDE changes a timestamp in the project file every
time you build. The project file has to be versioned as it includes all the build settings, but it doesn't need to be
committed just because the timestamp changed.

To help out in awkward cases like this, we have reserved a changelist called ignore-on-commit. Any file
added to this changelist will automatically be unchecked in the commit dialog. You can still commit changes, but
you have to select it manually in the commit dialog.

4.4.5. Commit Log Messages

Be sure to enter a log message which describes the changes you are committing. This will help you to see what
happened and when, as you browse through the project log messages at a later date. The message can be as long or
as brief as you like; many projects have guidelines for what should be included, the language to use, and sometimes
even a strict format.

You can apply simple formatting to your log messages using a convention similar to that used within emails. To
apply styling to text, use *text* for bold, _text_ for underlining, and ^text^ for italics.

Figure 4.9. The Commit Dialog Spellchecker

TortoiseSVN includes a spellchecker to help you get your log messages right. This will highlight any mis-spelled
words. Use the context menu to access the suggested corrections. Of course, it doesn't know every technical term

Daily Use Guide

36

that you do, so correctly spelt words will sometimes show up as errors. But don't worry. You can just add them
to your personal dictionary using the context menu.

The log message window also includes a filename and function auto-completion facility. This uses regular
expressions to extract class and function names from the (text) files you are committing, as well as the filenames
themselves. If a word you are typing matches anything in the list (after you have typed at least 3 characters, or
pressed Ctrl+Space), a drop-down appears allowing you to select the full name. The regular expressions supplied
with TortoiseSVN are held in the TortoiseSVN installation bin folder. You can also define your own regexes
and store them in %APPDATA%\TortoiseSVN\autolist.txt. Of course your private autolist will not be
overwritten when you update your installation of TortoiseSVN. If you are unfamiliar with regular expressions,
take a look at the introduction at https://en.wikipedia.org/wiki/Regular_expression [https://en.wikipedia.org/wiki/
Regular_expression], and the online documentation and tutorial at http://www.regular-expressions.info/ [http://
www.regular-expressions.info/].

Getting the regex just right can be tricky, so to help you sort out a suitable expression there is a test dialog which
allows you to enter an expression and then type in filenames to test it against. Start it from the command prompt
using the command TortoiseProc.exe /command:autotexttest.

The log message window also includes a commit message snippet facility. These snippets are shown in the
autocomplete dropdown once you type a snippet shortcut, and selecting the snippet in the autocomplete dropdown
then inserts the full text of the snippet. The snippets supplied with TortoiseSVN are held in the TortoiseSVN
installation bin folder. You can also define your own snippets and store them in %APPDATA%\TortoiseSVN
\snippet.txt. # is the comment character. Newlines can be inserted by escaping them like this: \n and \r.
To insert a backslash, escape it like this: \\.

You can re-use previously entered log messages. Just click on Recent messages to view a list of the last few
messages you entered for this working copy. The number of stored messages can be customized in the TortoiseSVN
settings dialog.

You can clear all stored commit messages from the Saved data page of TortoiseSVN's settings, or you can clear
individual messages from within the Recent messages dialog using the Delete key.

If you want to include the checked paths in your log message, you can use the command Context Menu → Paste
filename list in the edit control.

Another way to insert the paths into the log message is to simply drag the files from the file list onto the edit control.

Special Folder Properties

There are several special folder properties which can be used to help give more control over
the formatting of commit log messages and the language used by the spellchecker module. Read
Section 4.18, “Project Settings” for further information.

Integration with Bug Tracking Tools

If you have activated the bug tracking system, you can set one or more Issues in the Bug-ID / Issue-
Nr: text box. Multiple issues should be comma separated. Alternatively, if you are using regex-
based bug tracking support, just add your issue references as part of the log message. Learn more in
Section 4.29, “Integration with Bug Tracking Systems / Issue Trackers”.

4.4.6. Commit Progress

After pressing OK, a dialog appears displaying the progress of the commit.

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/

Daily Use Guide

37

Figure 4.10. The Progress dialog showing a commit in progress

The progress dialog uses colour coding to highlight different commit actions

Blue
Committing a modification.

Purple
Committing a new addition.

Dark red
Committing a deletion or a replacement.

Black
All other items.

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Section 4.31.1.5, “TortoiseSVN Colour Settings” for more information.

4.5. Update Your Working Copy With Changes From Others

Daily Use Guide

38

Figure 4.11. Progress dialog showing finished update

Periodically, you should ensure that changes done by others get incorporated in your local working copy. The
process of getting changes from the server to your local copy is known as updating. Updating may be done on
single files, a set of selected files, or recursively on entire directory hierarchies. To update, select the files and/

or directories you want, right click and select TortoiseSVN → Update in the explorer context menu. A window
will pop up displaying the progress of the update as it runs. Changes done by others will be merged into your files,
keeping any changes you may have done to the same files. The repository is not affected by an update.

The progress dialog uses colour coding to highlight different update actions

Purple
New item added to your WC.

Dark red
Redundant item deleted from your WC, or missing item replaced in your WC.

Green
Changes from repository successfully merged with your local changes.

Bright red
Changes from repository merged with local changes, resulting in conflicts which you need to resolve.

Black
Unchanged item in your WC updated with newer version from the repository.

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Section 4.31.1.5, “TortoiseSVN Colour Settings” for more information.

If you get any conflicts during an update (this can happen if others changed the same lines in the same file as you
did and those changes don't match) then the dialog shows those conflicts in red. You can double click on these
lines to start the external merge tool to resolve the conflicts.

When the update is complete, the progress dialog shows a summary of the number of items updated, added,
removed, conflicted, etc. below the file list. This summary information can be copied to the clipboard using Ctrl
+C.

The standard Update command has no options and just updates your working copy to the HEAD revision of the
repository, which is the most common use case. If you want more control over the update process, you should

Daily Use Guide

39

use TortoiseSVN → Update to Revision... instead. This allows you to update your working copy to a specific
revision, not only to the most recent one. Suppose your working copy is at revision 100, but you want it to reflect
the state which it had in revision 50 - then simply update to revision 50.

In the same dialog you can also choose the depth at which to update the current folder. The terms used are described
in Section 4.3.1, “Checkout Depth”. The default depth is Working copy, which preserves the existing depth
setting. You can also set the depth sticky which means subsequent updates will use that new depth, i.e. that
depth is then used as the default depth.

To make it easier to include or exclude specific items from the checkout click the Choose items... button. This
opens a new dialog where you can check all items you want in your working copy and uncheck all the items you
don't want.

You can also choose whether to ignore any external projects in the update (i.e. projects referenced using
svn:externals).

Caution

If you update a file or folder to a specific revision, you should not make changes to those files. You
will get “out of date” error messages when you try to commit them! If you want to undo changes
to a file and start afresh from an earlier revision, you can rollback to a previous revision from the
revision log dialog. Take a look at Section B.4, “Roll back (Undo) revisions in the repository” for
further instructions, and alternative methods.

Update to Revision can occasionally be useful to see what your project looked like at some earlier point in its
history. But in general, updating individual files to an earlier revision is not a good idea as it leaves your working
copy in an inconsistent state. If the file you are updating has changed name, you may even find that the file just
disappears from your working copy because no file of that name existed in the earlier revision. You should also
note that the item will show a normal green overlay, so it is indistinguishable from files which are up-to-date.

If you simply want a local copy of an old version of a file it is better to use the Context Menu → Save revision
to... command from the log dialog for that file.

Multiple Files/Folders

If you select multiple files and folders in the explorer and then select Update, all of those files/
folders are updated one by one. TortoiseSVN makes sure that all files/folders which are from the same
repository are updated to the exact same revision! Even if between those updates another commit
occurred.

4.6. Resolving Conflicts

Once in a while, you will get a conflict when you update/merge your files from the repository or when you switch
your working copy to a different URL. There are two kinds of conflicts:

file conflicts
A file conflict occurs if two (or more) developers have changed the same few lines of a file.

tree conflicts
A tree conflict occurs when a developer moved/renamed/deleted a file or folder, which another developer
either also has moved/renamed/deleted or just modified.

4.6.1. File Conflicts

A file conflict occurs when two or more developers have changed the same few lines of a file. As Subversion
knows nothing of your project, it leaves resolving the conflicts to the developers. The conflicting area in a text
file is marked like this:

Daily Use Guide

40

<<<<<<< filename
your changes
=======
code merged from repository
>>>>>>> revision

Also, for every conflicted file Subversion places three additional files in your directory:

filename.ext.mine
This is your file as it existed in your working copy before you updated your working copy - that is, without
conflict markers. This file has your latest changes in it and nothing else.

filename.ext.rOLDREV
This is the file that was the BASE revision before you updated your working copy. That is, it the file that you
checked out before you made your latest edits.

filename.ext.rNEWREV
This is the file that your Subversion client just received from the server when you updated your working copy.
This file corresponds to the HEAD revision of the repository.

You can either launch an external merge tool / conflict editor with TortoiseSVN → Edit Conflicts or you can use
any text editor to resolve the conflict manually. You should decide what the code should look like, do the necessary
changes and save the file. Using a merge tool such as TortoiseMerge or one of the other popular tools is generally
the easier option as they generally present the files involved in a 3-pane view and you don't have to worry about
the conflict markers. If you do use a text editor then you should search for lines starting with the string <<<<<<<.

Afterwards execute the command TortoiseSVN → Resolved and commit your modifications to the
repository. Please note that the Resolve command does not really resolve the conflict. It just removes the
filename.ext.mine and filename.ext.r* files, to allow you to commit your changes.

If you have conflicts with binary files, Subversion does not attempt to merge the files itself. The local file remains
unchanged (exactly as you last changed it) and you have filename.ext.r* files. If you want to discard your
changes and keep the repository version, just use the Revert command. If you want to keep your version and
overwrite the repository version, use the Resolved command, then commit your version.

You can use the Resolved command for multiple files if you right click on the parent folder and select

TortoiseSVN → Resolved... This will bring up a dialog listing all conflicted files in that folder, and you can
select which ones to mark as resolved.

4.6.2. Property Conflicts

A property conflict occurs when two or more developers have changed the same property. As with file content,
resolving the conflict can only be done by the developers.

If one of the changes must override the other then choose the option to Resolve using local property or Resolve
using remote property. If the changes must be merged then select Manually edit property, sort out what the
property value should be and mark as resolved.

4.6.3. Tree Conflicts

A tree conflict occurs when a developer moved/renamed/deleted a file or folder, which another developer either
also has moved/renamed/deleted or just modified. There are many different situations that can result in a tree
conflict, and all of them require different steps to resolve the conflict.

When a file is deleted locally in Subversion, the file is also deleted from the local file system, so even if it is part
of a tree conflict it cannot show a conflicted overlay and you cannot right click on it to resolve the conflict. Use
the Check for Modifications dialog instead to access the Edit conflicts option.

Daily Use Guide

41

TortoiseSVN can help find the right place to merge changes, but there may be additional work required to sort out
the conflicts. Remember that after an update the working BASE will always contain the revision of each item as
it was in the repository at the time of update. If you revert a change after updating it goes back to the repository
state, not to the way it was when you started making your own local changes.

4.6.3.1. Local delete, incoming edit upon update

1. Developer A modifies Foo.c and commits it to the repository.

2. Developer B has simultaneously moved Foo.c to Bar.c in his working copy, or simply deleted Foo.c or
its parent folder.

An update of developer B's working copy results in a tree conflict:

• Foo.c has been deleted from working copy, but is marked with a tree conflict.

• If the conflict results from a rename rather than a delete then Bar.c is marked as added, but does not contain
developer A's modifications.

Developer B now has to choose whether to keep Developer A's changes. In the case of a file rename, he can merge
the changes to Foo.c into the renamed file Bar.c. For simple file or directory deletions he can choose to keep
the item with Developer A's changes and discard the deletion. Or, by marking the conflict as resolved without
doing anything he effectively discards Developer A's changes.

The conflict edit dialog offers to merge changes if it can find the original file of the renamed Bar.c. If there
are multiple files that are possible move sources, then a button for each of these files is shown which allow you
to chose the correct file.

4.6.3.2. Local edit, incoming delete upon update

1. Developer A moves Foo.c to Bar.c and commits it to the repository.

2. Developer B modifies Foo.c in his working copy.

Or in the case of a folder move ...

1. Developer A moves parent folder FooFolder to BarFolder and commits it to the repository.

2. Developer B modifies Foo.c in his working copy.

An update of developer B's working copy results in a tree conflict. For a simple file conflict:

• Bar.c is added to the working copy as a normal file.

• Foo.c is marked as added (with history) and has a tree conflict.

For a folder conflict:

• BarFolder is added to the working copy as a normal folder.

• FooFolder is marked as added (with history) and has a tree conflict.

Foo.c is marked as modified.

Developer B now has to decide whether to go with developer A's reorganisation and merge her changes into the
corresponding file in the new structure, or simply revert A's changes and keep the local file.

To merge her local changes with the reshuffle, Developer B must first find out to what filename the conflicted
file Foo.c was renamed/moved in the repository. This can be done by using the log dialog. Then use the button
which shows the correct source file to resolve the conflict.

If Developer B decides that A's changes were wrong then she must choose the Mark as resolved button in the
conflict editor dialog. This marks the conflicted file/folder as resolved, but Developer A's changes need to be
removed by hand. Again the log dialog helps to track down what was moved.

Daily Use Guide

42

4.6.3.3. Local delete, incoming delete upon update

1. Developer A moves Foo.c to Bar.c and commits it to the repository.

2. Developer B moves Foo.c to Bix.c.

An update of developer B's working copy results in a tree conflict:

• Bix.c is marked as added with history.

• Bar.c is added to the working copy with status 'normal'.

• Foo.c is marked as deleted and has a tree conflict.

To resolve this conflict, Developer B has to find out to what filename the conflicted file Foo.c was renamed/
moved in the repository. This can be done by using the log dialog.

Then developer B has to decide which new filename of Foo.c to keep - the one done by developer A or the
rename done by himself.

After developer B has manually resolved the conflict, the tree conflict has to be marked as resolved with the button
in the conflict editor dialog.

4.6.3.4. Local missing, incoming edit upon merge

1. Developer A working on trunk modifies Foo.c and commits it to the repository

2. Developer B working on a branch moves Foo.c to Bar.c and commits it to the repository

A merge of developer A's trunk changes to developer B's branch working copy results in a tree conflict:

• Bar.c is already in the working copy with status 'normal'.

• Foo.c is marked as missing with a tree conflict.

To resolve this conflict, Developer B has to mark the file as resolved in the conflict editor dialog, which will
remove it from the conflict list. She then has to decide whether to copy the missing file Foo.c from the repository
to the working copy, whether to merge Developer A's changes to Foo.c into the renamed Bar.c or whether to
ignore the changes by marking the conflict as resolved and doing nothing else.

Note that if you copy the missing file from the repository and then mark as resolved, your copy will be removed
again. You have to resolve the conflict first.

4.6.3.5. Local edit, incoming delete upon merge

1. Developer A working on trunk moves Foo.c to Bar.c and commits it to the repository.

2. Developer B working on a branch modifies Foo.c and commits it to the repository.

1. Developer A working on trunk moves parent folder FooFolder to BarFolder and commits it to the
repository.

2. Developer B working on a branch modifies Foo.c in her working copy.

A merge of developer A's trunk changes to developer B's branch working copy results in a tree conflict:

• Bar.c is marked as added.

• Foo.c is marked as modified with a tree conflict.

Developer B now has to decide whether to go with developer A's reorganisation and merge her changes into the
corresponding file in the new structure, or simply revert A's changes and keep the local file.

To merge her local changes with the reshuffle, Developer B must first find out to what filename the conflicted file
Foo.c was renamed/moved in the repository. This can be done by using the log dialog for the merge source. The
conflict editor only shows the log for the working copy as it does not know which path was used in the merge,

Daily Use Guide

43

so you will have to find that yourself. The changes must then be merged by hand as there is currently no way to
automate or even simplify this process. Once the changes have been ported across, the conflicted path is redundant
and can be deleted.

If Developer B decides that A's changes were wrong then she must choose the Mark as resolved button in the
conflict editor dialog. This marks the conflicted file/folder as resolved, but Developer A's changes need to be
removed by hand. Again the log dialog for the merge source helps to track down what was moved.

4.6.3.6. Local delete, incoming delete upon merge

1. Developer A working on trunk moves Foo.c to Bar.c and commits it to the repository.

2. Developer B working on a branch moves Foo.c to Bix.c and commits it to the repository.

A merge of developer A's trunk changes to developer B's branch working copy results in a tree conflict:

• Bix.c is marked with normal (unmodified) status.

• Bar.c is marked as added with history.

• Foo.c is marked as missing and has a tree conflict.

To resolve this conflict, Developer B has to find out to what filename the conflicted file Foo.c was renamed/
moved in the repository. This can be done by using the log dialog for the merge source.

Then developer B has to decide which new filename of Foo.c to keep - the one done by developer A or the
rename done by himself.

After developer B has manually resolved the conflict, the tree conflict has to be marked as resolved with the button
in the conflict editor dialog.

4.6.3.7. Other tree conflicts

There are other cases which are labelled as tree conflicts simply because the conflict involves a folder rather than
a file. For example if you add a folder with the same name to both trunk and branch and then try to merge you will
get a tree conflict. If you want to keep the folder from the merge target, just mark the conflict as resolved. If you
want to use the one in the merge source then you need to SVN delete the one in the target first and run the merge
again. If you need anything more complicated then you have to resolve manually.

4.7. Getting Status Information

While you are working on your working copy you often need to know which files you have changed/added/
removed or renamed, or even which files got changed and committed by others.

4.7.1. Icon Overlays

Figure 4.12. Explorer showing icon overlays

Daily Use Guide

44

Now that you have checked out a working copy from a Subversion repository you can see your files in the windows
explorer with changed icons. This is one of the reasons why TortoiseSVN is so popular. TortoiseSVN adds a so
called overlay icon to each file icon which overlaps the original file icon. Depending on the Subversion status of
the file the overlay icon is different.

A fresh checked out working copy has a green checkmark as overlay. That means the Subversion status is normal.

As soon as you start editing a file, the status changes to modified and the icon overlay then changes to a red
exclamation mark. That way you can easily see which files were changed since you last updated your working
copy and need to be committed.

If during an update a conflict occurs then the icon changes to a yellow exclamation mark.

If you have set the svn:needs-lock property on a file, Subversion makes that file read-only until you get a
lock on that file. Such files have this overlay to indicate that you have to get a lock first before you can edit that file.

If you hold a lock on a file, and the Subversion status is normal, this icon overlay reminds you that you should
release the lock if you are not using it to allow others to commit their changes to the file.

This icon shows you that some files or folders inside the current folder have been scheduled to be deleted from
version control or a file under version control is missing in a folder.

The plus sign tells you that a file or folder has been scheduled to be added to version control.

The bar sign tells you that a file or folder is ignored for version control purposes. This overlay is optional.

This icon shows files and folders which are not under version control, but have not been ignored. This overlay
is optional.

In fact, you may find that not all of these icons are used on your system. This is because the number of overlays
allowed by Windows is very limited and if you are also using an old version of TortoiseCVS, then there are not
enough overlay slots available. TortoiseSVN tries to be a “Good Citizen (TM)” and limits its use of overlays to
give other apps a chance too.

Now that there are more Tortoise clients around (TortoiseCVS, TortoiseHg, ...) the icon limit becomes a real
problem. To work around this, the TortoiseSVN project introduced a common shared icon set, loaded as a DLL,
which can be used by all Tortoise clients. Check with your client provider to see if this has been integrated yet :-)

Daily Use Guide

45

For a description of how icon overlays correspond to Subversion status and other technical details, read Section F.1,
“Icon Overlays”.

4.7.2. Detailed Status

Figure 4.13. Explorer property page, Subversion tab

Sometimes you want to have more detailed information about a file/directory than just the icon overlay. You can
get all the information Subversion provides in the explorer properties dialog. Just select the file or directory and

select Windows Menu → properties in the context menu (note: this is the normal properties menu entry the
explorer provides, not the one in the TortoiseSVN submenu!). In the properties dialog box TortoiseSVN has added
a new property page for files/folders under Subversion control, where you can see all relevant information about
the selected file/directory.

4.7.3. Local and Remote Status

Daily Use Guide

46

Figure 4.14. Check for Modifications

It's often very useful to know which files you have changed and also which files got changed and committed by

others. That's where the command TortoiseSVN → Check For Modifications... comes in handy. This dialog
will show you every file that has changed in any way in your working copy, as well as any unversioned files
you may have.

If you click on the Check Repository then you can also look for changes in the repository. That way you can
check before an update if there's a possible conflict. You can also update selected files from the repository without
updating the whole folder. By default, the Check Repository button only fetches the remote status with the
checkout depth of the working copy. If you want to see all files and folders in the repository, even those you have
not checked out, then you have to hold down the Shift key when you click on the Check Repository button.

The dialog uses colour coding to highlight the status.

Blue
Locally modified items.

Purple
Added items. Items which have been added with history have a + sign in the Text status column, and a tooltip
shows where the item was copied from.

Dark red
Deleted or missing items.

Green
Items modified locally and in the repository. The changes will be merged on update. These may produce
conflicts on update.

Bright red
Items modified locally and deleted in repository, or modified in repository and deleted locally. These will
produce conflicts on update.

Black
Unchanged and unversioned items.

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Section 4.31.1.5, “TortoiseSVN Colour Settings” for more information.

Daily Use Guide

47

Overlay icons are used to indicate other states as well. The screenshot below shows all the possible overlays that
are shown if necessary.

Overlays are shown for the following states:

• Checkout depth empty, meaning only the item itself.

• Checkout depth files, meaning only the item itself and all file children without child folders.

• Checkout depth immediates, meaning only the item itself and all file and folder children, but without children
of the child folders.

• Nested items, i.e., working copies inside the working copy.

• External items, i.e., all items that are added via an svn:externals property.

• Items that are restored after a commit. See Section 4.4.3, “Commit only parts of files” for details.

• Items that have property modifications, but only to the svn:mergeinfo property. If any other property is
modified, the overlay is not used.

Items which have been switched to a different repository path are also indicated using an (s) marker. You may
have switched something while working on a branch and forgotten to switch back to trunk. This is your warning
sign! The context menu allows you to switch them back to the normal path again.

From the context menu of the dialog you can show a diff of the changes. Check the local changes you made using

Context Menu → Compare with Base. Check the changes in the repository made by others using Context

Menu → Show Differences as Unified Diff.

You can also revert changes in individual files. If you have deleted a file accidentally, it will show up as Missing
and you can use Revert to recover it.

Unversioned and ignored files can be sent to the recycle bin from here using Context Menu → Delete. If you
want to delete files permanently (bypassing the recycle bin) hold the Shift key while clicking on Delete.

If you want to examine a file in detail, you can drag it from here into another application such as a text editor or
IDE, or you can save a copy simply by dragging it into a folder in explorer.

The columns are customizable. If you right click on any column header you will see a context menu allowing
you to select which columns are displayed. You can also change column width by using the drag handle which
appears when you move the mouse over a column boundary. These customizations are preserved, so you will see
the same headings next time.

If you are working on several unrelated tasks at once, you can also group files together into changelists. Read
Section 4.4.2, “Change Lists” for more information.

At the bottom of the dialog you can see a summary of the range of repository revisions in use in your working
copy. These are the commit revisions, not the update revisions; they represent the range of revisions where these
files were last committed, not the revisions to which they have been updated. Note that the revision range shown

Daily Use Guide

48

applies only to the items displayed, not to the entire working copy. If you want to see that information for the
whole working copy you must check the Show unmodified files checkbox.

Tip

If you want a flat view of your working copy, i.e. showing all files and folders at every level of the
folder hierarchy, then the Check for Modifications dialog is the easiest way to achieve that. Just
check the Show unmodified files checkbox to show all files in your working copy.

Repairing External Renames

Sometimes files get renamed outside of Subversion, and they show up in the file list as a missing
file and an unversioned file. To avoid losing the history you need to notify Subversion about the
connection. Simply select both the old name (missing) and the new name (unversioned) and use

Context Menu → Repair Move to pair the two files as a rename.

Repairing External Copies

If you made a copy of a file but forgot to use the Subversion command to do so, you can repair that
copy so the new file doesn't lose its history. Simply select both the old name (normal or modified) and

the new name (unversioned) and use Context Menu → Repair Copy to pair the two files as a copy.

4.7.4. Viewing Diffs

Often you want to look inside your files, to have a look at what you've changed. You can accomplish this by
selecting a file which has changed, and selecting Diff from TortoiseSVN's context menu. This starts the external
diff-viewer, which will then compare the current file with the pristine copy (BASE revision), which was stored
after the last checkout or update.

Tip

Even when not inside a working copy or when you have multiple versions of the file lying around,
you can still display diffs:

Select the two files you want to compare in explorer (e.g. using Ctrl and the mouse) and choose
Diff from TortoiseSVN's context menu. The file clicked last (the one with the focus, i.e. the dotted
rectangle) will be regarded as the later one.

4.8. Change Lists

In an ideal world, you only ever work on one thing at a time, and your working copy contains only one set of
logical changes. OK, back to reality. It often happens that you have to work on several unrelated tasks at once,
and when you look in the commit dialog, all the changes are mixed in together. The changelist feature helps you
group files together, making it easier to see what you are doing. Of course this can only work if the changes do
not overlap. If two different tasks affect the same file, there is no way to separate the changes.

You can see changelists in several places, but the most important ones are the commit dialog and the check-for-
modifications dialog. Let's start in the check-for-modifications dialog after you have worked on several features
and many files. When you first open the dialog, all the changed files are listed together. Suppose you now want
to organise things and group those files according to feature.

Select one or more files and use Context Menu → Move to changelist to add an item to a changelist. Initially
there will be no changelists, so the first time you do this you will create a new changelist. Give it name which
describes what you are using it for, and click OK. The dialog will now change to show groups of items.

Daily Use Guide

49

Once you have created a changelist you can drag and drop items into it, either from another changelist, or from
Windows Explorer. Dragging from Explorer can be useful as it allows you to add items to a changelist before the
file is modified. You could do that from the check-for-modifications dialog, but only by displaying all unmodified
files.

Figure 4.15. Commit dialog with Changelists

In the commit dialog you can see those same files, grouped by changelist. Apart from giving an immediate visual
indication of groupings, you can also use the group headings to select which files to commit.

TortoiseSVN reserves one changelist name for its own use, namely ignore-on-commit. This is used to mark
versioned files which you almost never want to commit even though they have local changes. This feature is
described in Section 4.4.4, “Excluding Items from the Commit List”.

When you commit files belonging to a changelist then normally you would expect that the changelist membership
is no longer needed. So by default, files are removed from changelists automatically on commit. If you wish to
retain the file in its changelist, use the Keep changelists checkbox at the bottom of the commit dialog.

Daily Use Guide

50

Tip

Changelists are purely a local client feature. Creating and removing changelists will not affect the
repository, nor anyone else's working copy. They are simply a convenient way for you to organise
your files.

Warning

Note that if you use changelists, externals will no longer show up in their own groups anymore. Once
there are changelists, files and folders are grouped by changelist, not by external anymore.

4.9. Shelving

More often than wanted, it's necessary to stop what you were working on and work on something else. For example
a serious problem needs immediate dealing with and you have to stop working on the new feature. If possible,
you should commit the changes you have done so far and then start working on the urgent issue, but often those
changes would break the build or are just not ready for committing yet.

So if you can't commit your local changes yet, you have to put them aside while you're working on the urgent issue.
The shelving feature helps you do exactly that: you can store your local changes on a shelve, get your working
copy in a clean state again and work on the issue. After you're finished with the urgent issue and you've committed
those changes, you can unshelve your shelved work and continue working on your previous task again.

Two new commands are implemented for this. One for shelving and one for unshelving.

To shelve your local changes, select your working copy and use Context Menu → Shelve The following dialog
allows you to select the files you want to shelve and give a name under which you want to store them.

Figure 4.16. Shelve dialog

Daily Use Guide

51

Then click OK and the changes are stored under the name you specified, and your working copy is reset to a
clean state.

To unshelve your changes, use Context Menu → Unshelve to get the unshelve dialog. This dialog shows you a
list of all shelved items. Select the shelved item you want to apply back to your working copy and click OK.

Figure 4.17. Unshelve dialog

Tip

Shelves are purely a local client feature. Creating and removing Shelves will not affect the repository,
nor anyone else's working copy.

Warning

Currently only text files can be shelved and unshelved. Binary files and text files encoded in utf-16
(unicode) can not be shelved.

4.10. Revision Log Dialog

For every change you make and commit, you should provide a log message for that change. That way you can
later find out what changes you made and why, and you have a detailed log for your development process.

The Revision Log Dialog retrieves all those log messages and shows them to you. The display is divided into
3 panes.

• The top pane shows a list of revisions where changes to the file/folder have been committed. This summary
includes the date and time, the person who committed the revision and the start of the log message.

Lines shown in blue indicate that something has been copied to this development line (perhaps from a branch).

• The middle pane shows the full log message for the selected revision.

• The bottom pane shows a list of all files and folders that were changed as part of the selected revision.

But it does much more than that - it provides context menu commands which you can use to get even more
information about the project history.

Daily Use Guide

52

4.10.1. Invoking the Revision Log Dialog

Figure 4.18. The Revision Log Dialog

There are several places from where you can show the Log dialog:

• From the TortoiseSVN context submenu

• From the property page

• From the Progress dialog after an update has finished. Then the Log dialog only shows those revisions which
were changed since your last update

• From the repository browser

If the repository is unavailable you will see the Want to go offline? dialog, described in Section 4.10.10, “Offline
Mode”.

4.10.2. Revision Log Actions

The top pane has an Actions column containing icons that summarize what has been done in that revision. There
are four different icons, each shown in its own column.

If a revision modified a file or directory, the modified icon is shown in the first column.

If a revision added a file or directory, the added icon is shown in the second column.

Daily Use Guide

53

If a revision deleted a file or directory, the deleted icon is shown in the third column.

If a revision replaced a file or directory, the replaced icon is shown in the fourth column.

If a revision moved or renamed a file or directory, the moved icon is shown in the fourth column.

If a revision replaced a file or directory by moving/renaming it, the move replaced icon is shown in the fourth
column.

If a revision merged a file or directory, the merged icon is shown in the fourth column.

If a revision reverse merged a file or directory, the reverse merged icon is shown in the fourth column.

4.10.3. Getting Additional Information

Figure 4.19. The Revision Log Dialog Top Pane with Context Menu

The top pane of the Log dialog has a context menu that allows you to access much more information. Some of
these menu entries appear only when the log is shown for a file, and some only when the log is shown for a folder.

Daily Use Guide

54

Compare with working copy
Compare the selected revision with your working copy. The default Diff-Tool is TortoiseMerge which is
supplied with TortoiseSVN. If the log dialog is for a folder, this will show you a list of changed files, and
allow you to review the changes made to each file individually.

Compare and blame with working BASE
Blame the selected revision, and the file in your working BASE and compare the blame reports using a visual
diff tool. Read Section 4.24.2, “Blame Differences” for more detail. (files only)

Show changes as unified diff
View the changes made in the selected revision as a Unified-Diff file (GNU patch format). This shows only
the differences with a few lines of context. It is harder to read than a visual file compare, but will show all
file changes together in a compact format.

If you hold down the Shift key when clicking on the menu item, a dialog shows up first where you can set
options for the unified diff. These options include the ability to ignore changes in line endings and whitespaces.

Compare with previous revision
Compare the selected revision with the previous revision. This works in a similar manner to comparing with
your working copy. For folders this option will first show the changed files dialog allowing you to select
files to compare.

Compare and blame with previous revision
Show the changed files dialog allowing you to select files. Blame the selected revision, and the previous
revision, and compare the results using a visual diff tool. (folders only)

Save revision to...
Save the selected revision to a file so you have an older version of that file. (files only)

Open / Open with...
Open the selected file, either with the default viewer for that file type, or with a program you choose. (files
only)

Blame...
Blame the file up to the selected revision. (files only)

Browse repository
Open the repository browser to examine the selected file or folder in the repository as it was at the selected
revision.

Create branch/tag from revision
Create a branch or tag from a selected revision. This is useful e.g. if you forgot to create a tag and already
committed some changes which weren't supposed to get into that release.

Update item to revision
Update your working copy to the selected revision. Useful if you want to have your working copy reflect a
time in the past, or if there have been further commits to the repository and you want to update your working
copy one step at a time. It is best to update a whole directory in your working copy, not just one file, otherwise
your working copy could be inconsistent.

If you want to undo an earlier change permanently, use Revert to this revision instead.

Revert to this revision
Revert to an earlier revision. If you have made several changes, and then decide that you really want to go
back to how things were in revision N, this is the command you need. The changes are undone in your working
copy so this operation does not affect the repository until you commit the changes. Note that this will undo
all changes made after the selected revision, replacing the file/folder with the earlier version.

If your working copy is in an unmodified state, after you perform this action your working copy will show as
modified. If you already have local changes, this command will merge the undo changes into your working
copy.

Daily Use Guide

55

What is happening internally is that Subversion performs a reverse merge of all the changes made after the
selected revision, undoing the effect of those previous commits.

If after performing this action you decide that you want to undo the undo and get your working copy back

to its previous unmodified state, you should use TortoiseSVN → Revert from within Windows Explorer,
which will discard the local modifications made by this reverse merge action.

If you simply want to see what a file or folder looked like at an earlier revision, use Update to revision or
Save revision as... instead.

Revert changes from this revision
Undo changes from which were made in the selected revision. The changes are undone in your working copy
so this operation does not affect the repository at all! Note that this will undo the changes made in that revision
only; it does not replace your working copy with the entire file at the earlier revision. This is very useful for
undoing an earlier change when other unrelated changes have been made since.

If your working copy is in an unmodified state, after you perform this action your working copy will show as
modified. If you already have local changes, this command will merge the undo changes into your working
copy.

What is happening internally is that Subversion performs a reverse merge of that one revision, undoing its
effect from a previous commit.

You can undo the undo as described above in Revert to this revision.

Merge revision to...
Merge the selected revision(s) into a different working copy. A folder selection dialog allows you to choose
the working copy to merge into, but after that there is no confirmation dialog, nor any opportunity to try a test
merge. It is a good idea to merge into an unmodified working copy so that you can revert the changes if it
doesn't work out! This is a useful feature if you want to merge selected revisions from one branch to another.

Checkout...
Make a fresh checkout of the selected folder at the selected revision. This brings up a dialog for you to confirm
the URL and revision, and select a location for the checkout.

Export...
Export the selected file/folder at the selected revision. This brings up a dialog for you to confirm the URL
and revision, and select a location for the export.

Edit author / log message
Edit the log message or author attached to a previous commit. Read Section 4.10.7, “Changing the Log
Message and Author” to find out how this works.

Show revision properties
View and edit any revision property, not just log message and author. Refer to Section 4.10.7, “Changing the
Log Message and Author”.

Copy to clipboard
Copy the log details of the selected revisions to the clipboard. This will copy the revision number, author,
date, log message and the list of changed items for each revision.

Search log messages...
Search log messages for the text you enter. This searches the log messages that you entered and also the action
summaries created by Subversion (shown in the bottom pane). The search is not case sensitive.

Create code collaborator review...
This menu is shown only if the SmartBear code collaborator tool is installed. When invoked for the first time,
a dialog is shown prompting the user to enter user credentials for both code collaborator and SVN. Once the

Daily Use Guide

56

settings are stored, the settings dialog is no longer shown when the menu is invoked, unless the user holds
Ctrl while executing the menu item. The configuration and the chosen revision(s) are used to invoke the code
collaborator graphical user interface client, which creates a new review with the selected revisions.

Figure 4.20. The Code Collaborator Settings Dialog

Figure 4.21. Top Pane Context Menu for 2 Selected Revisions

If you select two revisions at once (using the usual Ctrl-modifier), the context menu changes and gives you fewer
options:

Compare revisions
Compare the two selected revisions using a visual difference tool. The default Diff-Tool is TortoiseMerge
which is supplied with TortoiseSVN.

If you select this option for a folder, a further dialog pops up listing the changed files and offering you further
diff options. Read more about the Compare Revisions dialog in Section 4.11.3, “Comparing Folders”.

Blame revisions
Blame the two revisions and compare the blame reports using a visual difference tool. Read Section 4.24.2,
“Blame Differences” for more detail.

Show differences as unified diff
View the differences between the two selected revisions as a Unified-Diff file. This works for files and folders.

Copy to clipboard
Copy log messages to clipboard as described above.

Daily Use Guide

57

Search log messages...
Search log messages as described above.

If you select two or more revisions (using the usual Ctrl or Shift modifiers), the context menu will include an
entry to Revert all changes which were made in the selected revisions. This is the easiest way to rollback a group
of revisions in one go.

You can also choose to merge the selected revisions to another working copy, as described above.

If all selected revisions have the same author, you can edit the author of all those revisions in one go.

Figure 4.22. The Log Dialog Bottom Pane with Context Menu

The bottom pane of the Log dialog also has a context menu that allows you to

Show changes
Show changes made in the selected revision for the selected file.

Blame changes
Blame the selected revision and the previous revision for the selected file, and compare the blame reports
using a visual diff tool. Read Section 4.24.2, “Blame Differences” for more detail.

Show as unified diff
Show file changes in unified diff format. This context menu is only available for files shown as modified.

Open / Open with...
Open the selected file, either with the default viewer for that file type, or with a program you choose.

Blame...
Opens the Blame dialog, allowing you to blame up to the selected revision.

Revert changes from this revision
Revert the changes made to the selected file in that revision.

Show properties
View the Subversion properties for the selected item.

Show log
Show the revision log for the selected single file.

Daily Use Guide

58

Get merge logs
Show the revision log for the selected single file, including merged changes. Find out more in Section 4.10.6,
“Merge Tracking Features”.

Save revision to...
Save the selected revision to a file so you have an older version of that file.

Export...
Export the selected items in this revision to a folder, preserving the file hierarchy.

When multiple files are selected in the bottom pane of the Log dialog, the context menu changes to the following:

Figure 4.23. The Log Dialog Bottom Pane with Context Menu When Multiple Files
Selected.

Save revision to...
Save the selected revision to a file so you have an older version of that file.

Show multiple changes...
Show changes made in the selected revision for the selected files. Note that the show changes functionality
is invoked multiple times, which may bring up multiple copies of your selected diff tool, or just add a new
comparison tab in your diff tool. If you have selected more than 15 files, you will be prompted to confirm
the action.

Open multiple local...
This will open local working copy files that correspond to your selected files using the application that is
registered for the extension. [The behavior is the one you would get double-clicking the working-copy file(s) in
Windows explorer]. Depending on how your file extension is associated to an application and the capabilities
of the application, this may be a slow operation. In the worst case, new instances of the application may be
launched by Windows for each file that was selected.

If you hold Ctrl while invoking this command, the working copy files are always loaded into Visual Studio.
This only works when the following conditions are met: Visual Studio must be running in the same user
context while having the same process integrity level [running as admin or not] as TortoiseProc.exe. It may be
desirable to have the solution containing the changed files loaded, although this is not strictly necessary. Only
files that exist on disk with extensions [.cpp, .h, .cs, .rc, .resx, .xaml, .js, .html, .htm, .asp, .aspx, .php, .css
and .xml] will be loaded. A maximum of 100 files can be loaded into Visual Studio at one time, and the files
are always loaded as new tabs into the currently open instance of Visual Studio. The benefit of reviewing
code changes in Visual Studio lies in the fact that you can then use the built-in code navigation, reference
finding, static code analysis and other tools built into Visual Studio.

Export...
Export the selected files/folder at the selected revision. This brings up a dialog for you to confirm the URL
and revision, and select a location for the export.

Tip

You may notice that sometimes we refer to changes and other times to differences. What's the
difference?

Daily Use Guide

59

Subversion uses revision numbers to mean 2 different things. A revision generally represents the
state of the repository at a point in time, but it can also be used to represent the changeset which
created that revision, e.g. “Done in r1234” means that the changes committed in r1234 implement
feature X. To make it clearer which sense is being used, we use two different terms.

If you select two revisions N and M, the context menu will offer to show the difference between
those two revisions. In Subversion terms this is diff -r M:N.

If you select a single revision N, the context menu will offer to show the changes made in that
revision. In Subversion terms this is diff -r N-1:N or diff -c N.

The bottom pane shows the files changed in all selected revisions, so the context menu always offers
to show changes.

4.10.4. Getting more log messages

The Log dialog does not always show all changes ever made for a number of reasons:

• For a large repository there may be hundreds or even thousands of changes and fetching them all could take
a long time. Normally you are only interested in the more recent changes. By default, the number of log

messages fetched is limited to 100, but you can change this value in TortoiseSVN → Settings (Section 4.31.1.2,
“TortoiseSVN Dialog Settings 1”),

• When the Stop on copy/rename box is checked, Show Log will stop at the point that the selected file or folder
was copied from somewhere else within the repository. This can be useful when looking at branches (or tags)
as it stops at the root of that branch, and gives a quick indication of changes made in that branch only.

Normally you will want to leave this option unchecked. TortoiseSVN remembers the state of the checkbox, so
it will respect your preference.

When the Show Log dialog is invoked from within the Merge dialog, the box is always checked by default.
This is because merging is most often looking at changes on branches, and going back beyond the root of the
branch does not make sense in that instance.

Note that Subversion currently implements renaming as a copy/delete pair, so renaming a file or folder will also
cause the log display to stop if this option is checked.

If you want to see more log messages, click the Next 100 to retrieve the next 100 log messages. You can repeat
this as many times as needed.

Next to this button there is a multi-function button which remembers the last option you used it for. Click on the
arrow to see the other options offered.

Use Show Range ... if you want to view a specific range of revisions. A dialog will then prompt you to enter
the start and end revision.

Use Show All if you want to see all log messages from HEAD right back to revision 1.

To refresh the latest revision in case there were other commits while the log dialog was open, hit the F5 key.

To refresh the log cache, hit the Ctrl-F5 keys.

4.10.5. Current Working Copy Revision

Because the log dialog shows you the log from HEAD, not from the current working copy revision, it often happens
that there are log messages shown for content which has not yet been updated in your working copy. To help
make this clearer, the commit message which corresponds to the revision you have in your working copy is shown
in bold.

Daily Use Guide

60

When you show the log for a folder the revision highlighted is the highest revision found anywhere within that
folder, which requires a crawl of the working copy. The crawl takes place within a separate thread so as not to
delay showing the log, but as a result highlighting for folders may not appear immediately.

4.10.6. Merge Tracking Features

Subversion 1.5 and later keeps a record of merges using properties. This allows us to get a more detailed history
of merged changes. For example, if you develop a new feature on a branch and then merge that branch back to
trunk, the feature development will show up on the trunk log as a single commit for the merge, even though there
may have been 1000 commits during branch development.

Figure 4.24. The Log Dialog Showing Merge Tracking Revisions

If you want to see the detail of which revisions were merged as part of that commit, use the Include merged
revisions checkbox. This will fetch the log messages again, but will also interleave the log messages from revisions
which were merged. Merged revisions are shown in grey because they represent changes made on a different part
of the tree.

Of course, merging is never simple! During feature development on the branch there will probably be occasional
merges back from trunk to keep the branch in sync with the main line code. So the merge history of the branch will
also include another layer of merge history. These different layers are shown in the log dialog using indentation
levels.

4.10.7. Changing the Log Message and Author

Revision properties are completely different from the Subversion properties of each item. Revprops are descriptive
items which are associated with one specific revision number in the repository, such as log message, commit date
and committer name (author).

Daily Use Guide

61

Sometimes you might want to change a log message you once entered, maybe because there's a spelling error in
it or you want to improve the message or change it for other reasons. Or you want to change the author of the
commit because you forgot to set up authentication or...

Subversion lets you change revision properties any time you want. But since such changes can't be undone
(those changes are not versioned) this feature is disabled by default. To make this work, you must set up a
pre-revprop-change hook. Please refer to the chapter on Hook Scripts [http://svnbook.red-bean.com/en/1.8/
svn.reposadmin.create.html#svn.reposadmin.create.hooks] in the Subversion Book for details about how to do
that. Read Section 3.3, “Server side hook scripts” to find some further notes on implementing hooks on a Windows
machine.

Once you've set up your server with the required hooks, you can change the author and log message (or any other
revprop) of any revision, using the context menu from the top pane of the Log dialog. You can also edit a log
message using the context menu for the middle pane.

Warning

Because Subversion's revision properties are not versioned, making modifications to such a property
(for example, the svn:log commit message property) will overwrite the previous value of that
property forever.

Important

Since TortoiseSVN keeps a cache of all the log information, edits made for author and log messages
will only show up on your local installation. Other users using TortoiseSVN will still see the cached
(old) authors and log messages until they refresh the log cache. Refer to Section 4.10.11, “Refreshing
the View”

4.10.8. Filtering Log Messages

If you want to restrict the log messages to show only those you are interested in rather than scrolling through a
list of hundreds, you can use the filter controls at the top of the Log Dialog. The start and end date controls allow
you to restrict the output to a known date range. The search box allows you to show only messages which contain
a particular phrase.

Click on the search icon to select which information you want to search in, and to choose regex mode. Normally
you will only need a simple sub-string search, but if you need to more flexible search terms, you can use regular
expressions. If you hover the mouse over the box, a tooltip will give hints on how to use the regex functions, or
the sub-string functions. The filter works by checking whether your filter string matches the log entries, and then
only those entries which match the filter string are shown.

Simple sub-string search works in a manner similar to a search engine. Strings to search for are separated by
spaces, and all strings must match. You can use a leading - to specify that a particular sub-string is not found
(invert matching for that term), and you can use ! at the start of the expression to invert matching for the entire
expression. You can use a leading + to specify that a sub-string should be included, even if previously excluded
with a -. Note that the order of inclusion/exclusion is significant here. You can use quote marks to surround a
string which must contain spaces, and if you want to search for a literal quotation mark you can use two quotation
marks together as a self-escaping sequence. Note that the backslash character is not used as an escape character
and has no special significance in simple sub-string searches. Examples will make this easier:

Alice Bob -Eve

searches for strings containing both Alice and Bob but not Eve

Alice -Bob +Eve

http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.create.hooks

Daily Use Guide

62

searches for strings containing both Alice but not Bob, or strings which contain Eve.

-Case +SpecialCase

searches for strings which do not contain Case, but still include strings which contain SpecialCase.

!Alice Bob

searches for strings which do not contain both Alice and Bob

!-Alice -Bob

do you remember De Morgan's theorem? NOT(NOT Alice AND NOT Bob) reduces to (Alice OR Bob).

"Alice and Bob"

searches for the literal expression “Alice and Bob”

""

searches for a double-quote anywhere in the text

"Alice says ""hi"" to Bob"

searches for the literal expression “Alice says "hi" to Bob”.

Describing the use of regular expression searches is beyond the scope of this manual, but you can find online
documentation and a tutorial at http://www.regular-expressions.info/ [http://www.regular-expressions.info/].

Note that these filters act on the messages already retrieved. They do not control downloading of messages from
the repository.

You can also filter the path names in the bottom pane using the Show only affected paths checkbox. Affected
paths are those which contain the path used to display the log. If you fetch the log for a folder, that means anything
in that folder or below it. For a file it means just that one file. Normally the path list shows any other paths which
are affected by the same commit, but in grey. If the box is checked, those paths are hidden.

Sometimes your working practices will require log messages to follow a particular format, which means that
the text describing the changes is not visible in the abbreviated summary shown in the top pane. The property
tsvn:logsummary can be used to extract a portion of the log message to be shown in the top pane. Read
Section 4.18.2, “TortoiseSVN Project Properties” to find out how to use this property.

No Log Formatting from Repository Browser

Because the formatting depends upon accessing Subversion properties, you will only see the results
when using a checked out working copy. Fetching properties remotely is a slow operation, so you
will not see this feature in action from the repo browser.

http://www.regular-expressions.info/
http://www.regular-expressions.info/

Daily Use Guide

63

4.10.9. Statistical Information

The Statistics button brings up a box showing some interesting information about the revisions shown in the Log
dialog. This shows how many authors have been at work, how many commits they have made, progress by week,
and much more. Now you can see at a glance who has been working hardest and who is slacking ;-)

4.10.9.1. Statistics Page

This page gives you all the numbers you can think of, in particular the period and number of revisions covered,
and some min/max/average values.

4.10.9.2. Commits by Author Page

Figure 4.25. Commits-by-Author Histogram

This graph shows you which authors have been active on the project as a simple histogram, stacked histogram
or pie chart.

Daily Use Guide

64

Figure 4.26. Commits-by-Author Pie Chart

Where there are a few major authors and many minor contributors, the number of tiny segments can make the graph
more difficult to read. The slider at the bottom allows you to set a threshold (as a percentage of total commits)
below which any activity is grouped into an Others category.

Daily Use Guide

65

4.10.9.3. Commits by date Page

Figure 4.27. Commits-by-date Graph

This page gives you a graphical representation of project activity in terms of number of commits and author. This
gives some idea of when a project is being worked on, and who was working at which time.

When there are several authors, you will get many lines on the graph. There are two views available here: normal,
where each author's activity is relative to the base line, and stacked, where each author's activity is relative to the
line underneath. The latter option avoids the lines crossing over, which can make the graph easier to read, but less
easy to see one author's output.

By default the analysis is case-sensitive, so users PeterEgan and PeteRegan are treated as different authors.
However, in many cases user names are not case-sensitive, and are sometimes entered inconsistently, so you may
want DavidMorgan and davidmorgan to be treated as the same person. Use the Authors case insensitive
checkbox to control how this is handled.

Note that the statistics cover the same period as the Log dialog. If that is only displaying one revision then the
statistics will not tell you very much.

Daily Use Guide

66

4.10.10. Offline Mode

Figure 4.28. Go Offline Dialog

If the server is not reachable, and you have log caching enabled you can use the log dialog and revision graph
in offline mode. This uses data from the cache, which allows you to continue working although the information
may not be up-to-date or even complete.

Here you have three options:

Offline for now
Complete the current operation in offline mode, but retry the repository next time log data is requested.

Permanently offline
Remain in offline mode until a repository check is specifically requested. See Section 4.10.11, “Refreshing
the View”.

Cancel
If you don't want to continue the operation with possibly stale data, just cancel.

The Make this the default checkbox prevents this dialog from re-appearing and always picks the option you

choose next. You can still change (or remove) the default after doing this from TortoiseSVN → Settings.

4.10.11. Refreshing the View

If you want to check the server again for newer log messages, you can simply refresh the view using F5. If you
are using the log cache (enabled by default), this will check the repository for newer messages and fetch only the
new ones. If the log cache was in offline mode, this will also attempt to go back online.

If you are using the log cache and you think the message content or author may have changed, you can use Shift-
F5 or Ctrl-F5 to re-fetch the displayed messages from the server and update the log cache. Note that this only
affects messages currently shown and does not invalidate the entire cache for that repository.

4.11. Viewing Differences

One of the commonest requirements in project development is to see what has changed. You might want to look at
the differences between two revisions of the same file, or the differences between two separate files. TortoiseSVN
provides a built-in tool named TortoiseMerge for viewing differences of text files. For viewing differences of
image files, TortoiseSVN also has a tool named TortoiseIDiff. Of course, you can use your own favourite diff
program if you like.

Daily Use Guide

67

4.11.1. File Differences

Local changes
If you want to see what changes you have made in your working copy, just use the explorer context menu

and select TortoiseSVN → Diff.

Difference to another branch/tag
If you want to see what has changed on trunk (if you are working on a branch) or on a specific branch (if you
are working on trunk), you can use the explorer context menu. Just hold down the Shift key while you right

click on the file. Then select TortoiseSVN → Diff with URL. In the following dialog, specify the URL in the
repository with which you want to compare your local file to.

You can also use the repository browser and select two trees to diff, perhaps two tags, or a branch/tag and trunk.
The context menu there allows you to compare them using Compare revisions. Read more in Section 4.11.3,
“Comparing Folders”.

Difference from a previous revision
If you want to see the difference between a particular revision and your working copy, use the Revision Log
dialog, select the revision of interest, then select Compare with working copy from the context menu.

If you want to see the difference between the last committed revision and your working copy, assuming that

the working copy hasn't been modified, just right click on the file. Then select TortoiseSVN → Diff with
previous version. This will perform a diff between the revision before the last-commit-date (as recorded in
your working copy) and the working BASE. This shows you the last change made to that file to bring it to
the state you now see in your working copy. It will not show changes newer than your working copy.

Difference between two previous revisions
If you want to see the difference between two revisions which are already committed, use the Revision Log
dialog and select the two revisions you want to compare (using the usual Ctrl-modifier). Then select Compare
revisions from the context menu.

If you did this from the revision log for a folder, a Compare Revisions dialog appears, showing a list of
changed files in that folder. Read more in Section 4.11.3, “Comparing Folders”.

All changes made in a commit
If you want to see the changes made to all files in a particular revision in one view, you can use Unified-Diff
output (GNU patch format). This shows only the differences with a few lines of context. It is harder to read
than a visual file compare, but will show all the changes together. From the Revision Log dialog select the
revision of interest, then select Show Differences as Unified-Diff from the context menu.

Difference between files
If you want to see the differences between two different files, you can do that directly in explorer by selecting

both files (using the usual Ctrl-modifier). Then from the explorer context menu select TortoiseSVN → Diff.

If the files to compare are not located in the same folder, use the command TortoiseSVN → Diff later to

mark the first file for diffing, then browse to the second file and use TortoiseSVN → Diff with "path/of/

marked/file". To remove the marked file, use the command TortoiseSVN → Diff later again, but hold down
the Ctrl-modifier while clicking on it.

Difference between WC file/folder and a URL
If you want to see the differences between a file in your working copy, and a file in any Subversion repository,
you can do that directly in explorer by selecting the file then holding down the Shift key whilst right clicking

to obtain the context menu. Select TortoiseSVN → Diff with URL. You can do the same thing for a working
copy folder. TortoiseMerge shows these differences in the same way as it shows a patch file - a list of changed
files which you can view one at a time.

Daily Use Guide

68

Difference with blame information
If you want to see not only the differences but also the author, revision and date that changes were made,
you can combine the diff and blame reports from within the revision log dialog. Read Section 4.24.2, “Blame
Differences” for more detail.

Difference between folders
The built-in tools supplied with TortoiseSVN do not support viewing differences between directory
hierarchies. But if you have an external tool which does support that feature, you can use that instead. In
Section 4.11.6, “External Diff/Merge Tools” we tell you about some tools which we have used.

If you have configured a third party diff tool, you can use Shift when selecting the Diff command to use the
alternate tool. Read Section 4.31.5, “External Program Settings” to find out about configuring other diff tools.

4.11.2. Line-end and Whitespace Options

Sometimes in the life of a project you might change the line endings from CRLF to LF, or you may change the
indentation of a section. Unfortunately this will mark a large number of lines as changed, even though there is
no change to the meaning of the code. The options here will help to manage these changes when it comes to
comparing and applying differences. You will see these settings in the Merge and Blame dialogs, as well as in
the settings for TortoiseMerge.

Ignore line endings excludes changes which are due solely to difference in line-end style.

Compare whitespaces includes all changes in indentation and inline whitespace as added/removed lines.

Ignore whitespace changes excludes changes which are due solely to a change in the amount or type of
whitespace, e.g. changing the indentation or changing tabs to spaces. Adding whitespace where there was none
before, or removing a whitespace completely is still shown as a change.

Ignore all whitespaces excludes all whitespace-only changes.

Naturally, any line with changed content is always included in the diff.

4.11.3. Comparing Folders

Daily Use Guide

69

Figure 4.29. The Compare Revisions Dialog

When you select two trees within the repository browser, or when you select two revisions of a folder in the log

dialog, you can Context menu → Compare revisions.

This dialog shows a list of all files which have changed and allows you to compare or blame them individually
using context menu.

You can export a change tree, which is useful if you need to send someone else your project tree structure, but
containing only the files which have changed. This operation works on the selected files only, so you need to select

the files of interest - usually that means all of them - and then Context menu → Export selection to.... You will
be prompted for a location to save the change tree.

You can also export the list of changed files to a text file using Context menu → Save list of selected files to....

If you want to export the list of files and the actions (modified, added, deleted) as well, you can do that using

Context menu → Copy selection to clipboard.

The button at the top allows you to change the direction of comparison. You can show the changes need to get
from A to B, or if you prefer, from B to A.

The buttons with the revision numbers on can be used to change to a different revision range. When you change
the range, the list of items which differ between the two revisions will be updated automatically.

If the list of filenames is very long, you can use the search box to reduce the list to filenames containing specific
text. Note that a simple text search is used, so if you want to restrict the list to C source files you should enter
.c rather than *.c.

4.11.4. Diffing Images Using TortoiseIDiff

Daily Use Guide

70

There are many tools available for diffing text files, including our own TortoiseMerge, but we often find ourselves
wanting to see how an image file has changed too. That's why we created TortoiseIDiff.

Figure 4.30. The image difference viewer

TortoiseSVN → Diff for any of the common image file formats will start TortoiseIDiff to show image differences.
By default the images are displayed side-by-side but you can use the View menu or toolbar to switch to a top-
bottom view instead, or if you prefer, you can overlay the images and pretend you are using a lightbox.

Naturally you can also zoom in and out and pan around the image. You can also pan the image simply by left-
dragging it. If you select the Link images together option, then the pan controls (scrollbars, mousewheel) on
both images are linked.

An image info box shows details about the image file, such as the size in pixels, resolution and colour depth. If

this box gets in the way, use View → Image Info to hide it. You can get the same information in a tooltip if you
hover the mouse over the image title bar.

When the images are overlaid, the relative intensity of the images (alpha blend) is controlled by a slider control
at the left side. You can click anywhere in the slider to set the blend directly, or you can drag the slider to change
the blend interactively. Ctrl+Shift-Wheel to change the blend.

The button above the slider toggles between 0% and 100% blends, and if you double click the button, the blend
toggles automatically every second until you click the button again. This can be useful when looking for multiple
small changes.

Sometimes you want to see a difference rather than a blend. You might have the image files for two revisions of a
printed circuit board and want to see which tracks have changed. If you disable alpha blend mode, the difference
will be shown as an XOR of the pixel colour values. Unchanged areas will be plain white and changes will be
coloured.

Daily Use Guide

71

4.11.5. Diffing Office Documents

When you want to diff non-text documents you normally have to use the software used to create the document as it
understands the file format. For the commonly used Microsoft Office and Open Office suites there is indeed some
support for viewing differences and TortoiseSVN includes scripts to invoke these with the right settings when you
diff files with the well-known file extensions. You can check which file extensions are supported and add your

own by going to TortoiseSVN → Settings and clicking Advanced in the External Programs section.

Problems with Office 2010

If you installed the Click-to-Run version of Office 2010 and you try to diff documents you may get
an error message from Windows Script Host something like this: “ActiveX component can't create
object: word.Application”. It seems you have to use the MSI-based version of Office to get the diff
functionality.

4.11.6. External Diff/Merge Tools

If the tools we provide don't do what you need, try one of the many open-source or commercial programs available.
Everyone has their own favourites, and this list is by no means complete, but here are a few that you might consider:

WinMerge
WinMerge [https://winmerge.sourceforge.net/] is a great open-source diff tool which can also handle
directories.

Perforce Merge
Perforce is a commercial RCS, but you can download the diff/merge tool for free. Get more information from
Perforce [https://www.perforce.com/perforce/products/merge.html].

KDiff3
KDiff3 is a free diff tool which can also handle directories. You can download it from here [http://
kdiff3.sf.net/].

SourceGear DiffMerge
SourceGear Vault is a commercial RCS, but you can download the diff/merge tool for free. Get more
information from SourceGear [https://www.sourcegear.com/diffmerge/].

ExamDiff
ExamDiff Standard is freeware. It can handle files but not directories. ExamDiff Pro is shareware and adds
a number of goodies including directory diff and editing capability. In both flavours, version 3.2 and above
can handle unicode. You can download them from PrestoSoft [http://www.prestosoft.com/].

Beyond Compare
Similar to ExamDiff Pro, this is an excellent shareware diff tool which can handle directory diffs and unicode.
Download it from Scooter Software [https://www.scootersoftware.com/].

Araxis Merge
Araxis Merge is a useful commercial tool for diff and merging both files and folders. It does three-way
comparison in merges and has synchronization links to use if you've changed the order of functions. Download
it from Araxis [https://www.araxis.com/merge/index.html].

Read Section 4.31.5, “External Program Settings” for information on how to set up TortoiseSVN to use these tools.

4.12. Adding New Files And Directories

https://winmerge.sourceforge.net/
https://winmerge.sourceforge.net/
https://www.perforce.com/perforce/products/merge.html
https://www.perforce.com/perforce/products/merge.html
http://kdiff3.sf.net/
http://kdiff3.sf.net/
http://kdiff3.sf.net/
https://www.sourcegear.com/diffmerge/
https://www.sourcegear.com/diffmerge/
http://www.prestosoft.com/
http://www.prestosoft.com/
https://www.scootersoftware.com/
https://www.scootersoftware.com/
https://www.araxis.com/merge/index.html
https://www.araxis.com/merge/index.html

Daily Use Guide

72

Figure 4.31. Explorer context menu for unversioned files

If you created new files and/or directories during your development process then you need to add them to source

control too. Select the file(s) and/or directory and use TortoiseSVN → Add.

After you added the files/directories to source control the file appears with a added icon overlay which means
you first have to commit your working copy to make those files/directories available to other developers. Adding
a file/directory does not affect the repository!

Many Adds

You can also use the Add command on already versioned folders. In that case, the add dialog will
show you all unversioned files inside that versioned folder. This helps if you have many new files
and need to add them all at once.

To add files from outside your working copy you can use the drag-and-drop handler:

1. select the files you want to add

2. right drag them to the new location inside the working copy

3. release the right mouse button

4. select Context Menu → SVN Add files to this WC. The files will then be copied to the working copy and
added to version control.

You can also add files within a working copy simply by left-dragging and dropping them onto the commit dialog.

If you add a file or folder by mistake, you can undo the addition before you commit using TortoiseSVN → Undo
add....

4.13. Copying/Moving/Renaming Files and Folders

It often happens that you already have the files you need in another project in your repository, and you simply
want to copy them across. You could simply copy the files and add them, but that would not give you any history.
And if you subsequently fix a bug in the original files, you can only merge the fix automatically if the new copy
is related to the original in Subversion.

The easiest way to copy files and folders from within a working copy is to use the right drag menu. When you right
drag a file or folder from one working copy to another, or even within the same folder, a context menu appears
when you release the mouse.

Daily Use Guide

73

Figure 4.32. Right drag menu for a directory under version control

Now you can copy existing versioned content to a new location, possibly renaming it at the same time.

You can also copy or move versioned files within a working copy, or between two working copies, using the
familiar cut-and-paste method. Use the standard Windows Copy or Cut to copy one or more versioned items to

the clipboard. If the clipboard contains such versioned items, you can then use TortoiseSVN → Paste (note: not
the standard Windows Paste) to copy or move those items to the new working copy location.

You can copy files and folders from your working copy to another location in the repository using TortoiseSVN

→ Branch/Tag. Refer to Section 4.20.1, “Creating a Branch or Tag” to find out more.

You can locate an older version of a file or folder in the log dialog and copy it to a new location in the repository

directly from the log dialog using Context menu → Create branch/tag from revision. Refer to Section 4.10.3,
“Getting Additional Information” to find out more.

You can also use the repository browser to locate content you want, and copy it into your working copy directly
from the repository, or copy between two locations within the repository. Refer to Section 4.25, “The Repository
Browser” to find out more.

Cannot copy between repositories

Whilst you can copy or move files and folders within a repository, you cannot copy or move from
one repository to another while preserving history using TortoiseSVN. Not even if the repositories
live on the same server. All you can do is copy the content in its current state and add it as new
content to the second repository.

If you are uncertain whether two URLs on the same server refer to the same or different repositories,
use the repo browser to open one URL and find out where the repository root is. If you can see both
locations in one repo browser window then they are in the same repository.

4.14. Ignoring Files And Directories

Daily Use Guide

74

Figure 4.33. Explorer context menu for unversioned files

In most projects you will have files and folders that should not be subject to version control. These might include
files created by the compiler, *.obj, *.lst, maybe an output folder used to store the executable. Whenever
you commit changes, TortoiseSVN shows your unversioned files, which fills up the file list in the commit dialog.
Of course you can turn off this display, but then you might forget to add a new source file.

The best way to avoid these problems is to add the derived files to the project's ignore list. That way they will
never show up in the commit dialog, but genuine unversioned source files will still be flagged up.

If you right click on a single unversioned file, and select the command TortoiseSVN → Add to Ignore List from
the context menu, a submenu appears allowing you to select just that file, or all files with the same extension.
Both submenus also have a (recursively) equivalent. If you select multiple files, there is no submenu and
you can only add those specific files/folders.

If you choose the (recursively) version of the ignore context menu, the item will be ignored not just for the
selected folder but all subfolders as well. However this requires SVN clients version 1.8 or higher.

If you want to remove one or more items from the ignore list, right click on those items and select TortoiseSVN

→ Remove from Ignore List You can also access a folder's svn:ignore property directly. That allows you to
specify more general patterns using filename globbing, described in the section below. Read Section 4.18, “Project
Settings” for more information on setting properties directly. Please be aware that each ignore pattern has to be
placed on a separate line. Separating them by spaces does not work.

The Global Ignore List

Another way to ignore files is to add them to the global ignore list. The big difference here is that the
global ignore list is a client property. It applies to all Subversion projects, but on the client PC only.
In general it is better to use the svn:ignore property where possible, because it can be applied
to specific project areas, and it works for everyone who checks out the project. Read Section 4.31.1,
“General Settings” for more information.

Ignoring Versioned Items

Versioned files and folders can never be ignored - that's a feature of Subversion. If you versioned
a file by mistake, read Section B.8, “Ignore files which are already versioned” for instructions on
how to “unversion” it.

4.14.1. Pattern Matching in Ignore Lists

Subversion's ignore patterns make use of filename globbing, a technique originally used in Unix to specify files
using meta-characters as wildcards. The following characters have special meaning:

*
Matches any string of characters, including the empty string (no characters).

Daily Use Guide

75

?
Matches any single character.

[...]
Matches any one of the characters enclosed in the square brackets. Within the brackets, a pair of characters
separated by “-” matches any character lexically between the two. For example [AGm-p] matches any one
of A, G, m, n, o or p.

Pattern matching is case sensitive, which can cause problems on Windows. You can force case insensitivity the
hard way by pairing characters, e.g. to ignore *.tmp regardless of case, you could use a pattern like *.[Tt]
[Mm][Pp].

If you want an official definition for globbing, you can find it in the IEEE specifications for the shell
command language Pattern Matching Notation [http://www.opengroup.org/onlinepubs/009695399/utilities/
xcu_chap02.html#tag_02_13].

No Paths in Global Ignore List

You should not include path information in your pattern. The pattern matching is intended to be
used against plain file names and folder names. If you want to ignore all CVS folders, just add CVS
to the ignore list. There is no need to specify CVS */CVS as you did in earlier versions. If you
want to ignore all tmp folders when they exist within a prog folder but not within a doc folder
you should use the svn:ignore property instead. There is no reliable way to achieve this using
global ignore patterns.

4.15. Deleting, Moving and Renaming

Subversion allows renaming and moving of files and folders. So there are menu entries for delete and rename in
the TortoiseSVN submenu.

http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13

Daily Use Guide

76

Figure 4.34. Explorer context menu for versioned files

4.15.1. Deleting files and folders

Use TortoiseSVN → Delete to remove files or folders from Subversion.

When you TortoiseSVN → Delete a file or folder, it is removed from your working copy immediately as well
as being marked for deletion in the repository on next commit. The item's parent folder shows a “modified” icon

overlay. Up until you commit the change, you can get the file back using TortoiseSVN → Revert on the parent
folder.

If you want to delete an item from the repository, but keep it locally as an unversioned file/folder, use Extended

Context Menu → Delete (keep local). You have to hold the Shift key while right clicking on the item in the
explorer list pane (right pane) in order to see this in the extended context menu.

If an item is deleted via the explorer instead of using the TortoiseSVN context menu, the commit dialog shows
those items as missing and lets you remove them from version control too before the commit. However, if you
update your working copy, Subversion will spot the missing item and replace it with the latest version from the

repository. If you need to delete a version-controlled file, always use TortoiseSVN → Delete so that Subversion
doesn't have to guess what you really want to do.

Getting a deleted file or folder back

If you have deleted a file or a folder and already committed that delete operation to the repository,

then a normal TortoiseSVN → Revert can't bring it back anymore. But the file or folder is not lost at
all. If you know the revision the file or folder got deleted (if you don't, use the log dialog to find out)
open the repository browser and switch to that revision. Then select the file or folder you deleted,

Daily Use Guide

77

right click and select Context Menu → Copy to... as the target for that copy operation select the
path to your working copy.

4.15.2. Moving files and folders

If you want to do a simple in-place rename of a file or folder, use Context Menu → Rename... Enter the new
name for the item and you're done.

If you want to move files around inside your working copy, perhaps to a different sub-folder, use the right mouse
drag-and-drop handler:

1. select the files or directories you want to move

2. right drag them to the new location inside the working copy

3. release the right mouse button

4. in the popup menu select Context Menu → SVN Move versioned files here

Commit the parent folder

Since renames and moves are done as a delete followed by an add you must commit the parent folder
of the renamed/moved file so that the deleted part of the rename/move will show up in the commit
dialog. If you don't commit the removed part of the rename/move, it will stay behind in the repository
and when your co-workers update, the old file will not be removed. i.e. they will have both the old
and the new copies.

You must commit a folder rename before changing any of the files inside the folder, otherwise your
working copy can get really messed up.

Another way of moving or copying files is to use the Windows copy/cut commands. Select the files you want to

copy, right click and choose Context Menu → Copy from the explorer context menu. Then browse to the target

folder, right click and choose TortoiseSVN → Paste. For moving files, choose Context Menu → Cut instead

of Context Menu → Copy.

You can also use the repository browser to move items around. Read Section 4.25, “The Repository Browser”
to find out more.

Do Not SVN Move Externals

You should not use the TortoiseSVN Move or Rename commands on a folder which has been
created using svn:externals. This action would cause the external item to be deleted from its
parent repository, probably upsetting many other people. If you need to move an externals folder
you should use an ordinary shell move, then adjust the svn:externals properties of the source
and destination parent folders.

4.15.3. Dealing with filename case conflicts

If the repository already contains two files with the same name but differing only in case (e.g. TEST.TXT
and test.txt), you will not be able to update or checkout the parent directory on a Windows client. Whilst
Subversion supports case-sensitive filenames, Windows does not.

This sometimes happens when two people commit, from separate working copies, files which happen to have the
same name, but with a case difference. It can also happen when files are committed from a system with a case-
sensitive file system, like Linux.

Daily Use Guide

78

In that case, you have to decide which one of them you want to keep and delete (or rename) the other one from
the repository.

Preventing two files with the same name

There is a server hook script available at: https://svn.apache.org/repos/asf/subversion/trunk/
contrib/hook-scripts/ [https://svn.apache.org/repos/asf/subversion/trunk/contrib/hook-scripts/] that
will prevent checkins which result in case conflicts.

4.15.4. Repairing File Renames

Sometimes your friendly IDE will rename files for you as part of a refactoring exercise, and of course it doesn't
tell Subversion. If you try to commit your changes, Subversion will see the old filename as missing and the new
one as an unversioned file. You could just check the new filename to get it added in, but you would then lose the
history tracing, as Subversion does not know the files are related.

A better way is to notify Subversion that this change is actually a rename, and you can do this within the Commit
and Check for Modifications dialogs. Simply select both the old name (missing) and the new name (unversioned)

and use Context Menu → Repair Move to pair the two files as a rename.

4.15.5. Deleting Unversioned Files

Usually you set your ignore list such that all generated files are ignored in Subversion. But what if you want to
clear all those ignored items to produce a clean build? Usually you would set that in your makefile, but if you are
debugging the makefile, or changing the build system it is useful to have a way of clearing the decks.

TortoiseSVN provides just such an option using Extended Context Menu → Delete unversioned items....
You have to hold the Shift while right clicking on a folder in the explorer list pane (right pane) in order to see
this in the extended context menu. This will produce a dialog which lists all unversioned files anywhere in your
working copy. You can then select or deselect items to be removed.

When such items are deleted, the recycle bin is used, so if you make a mistake here and delete a file that should
have been versioned, you can still recover it.

4.16. Undo Changes

If you want to undo all changes you made in a file since the last update you need to select the file, right click to

pop up the context menu and then select the command TortoiseSVN → Revert A dialog will pop up showing
you the files that you've changed and can revert. Select those you want to revert and click on OK.

https://svn.apache.org/repos/asf/subversion/trunk/contrib/hook-scripts/
https://svn.apache.org/repos/asf/subversion/trunk/contrib/hook-scripts/
https://svn.apache.org/repos/asf/subversion/trunk/contrib/hook-scripts/

Daily Use Guide

79

Figure 4.35. Revert dialog

If you also want to clear all the changelists that are set, check the box at the bottom of the dialog.

If you want to undo a deletion or a rename, you need to use Revert on the parent folder as the deleted item does
not exist for you to right click on.

If you want to undo the addition of an item, this appears in the context menu as TortoiseSVN → Undo add....
This is really a revert as well, but the name has been changed to make it more obvious.

The columns in this dialog can be customized in the same way as the columns in the Check for modifications
dialog. Read Section 4.7.3, “Local and Remote Status” for further details.

Since revert is sometimes used to clean up a working copy, there is an extra button which allows you to delete
unversioned items as well. When you click this button another dialog comes up listing all the unversioned items,
which you can then select for deletion.

Undoing Changes which have been Committed

Revert will only undo your local changes. It does not undo any changes which have already been
committed. If you want to undo all the changes which were committed in a particular revision, read
Section 4.10, “Revision Log Dialog” for further information.

Revert is Slow

When you revert changes you may find that the operation takes a lot longer than you expect. This is
because the modified version of the file is sent to the recycle bin, so you can retrieve your changes
if you reverted by mistake. However, if your recycle bin is full, Windows takes a long time to find

Daily Use Guide

80

a place to put the file. The solution is simple: either empty the recycle bin or deactivate the Use
recycle bin when reverting box in TortoiseSVN's settings.

4.17. Cleanup

If a Subversion command cannot complete successfully, perhaps due to server problems, your working copy can

be left in an inconsistent state. In that case you need to use TortoiseSVN → Cleanup on the folder. It is a good
idea to do this at the top level of the working copy.

Figure 4.36. The Cleanup dialog

In the cleanup dialog, there are also other useful options to get the working copy into a clean state.

Clean up working copy status
As stated above, this option tries to get an inconsistent working copy into a workable and usable state. This
doesn't affect any data you have but only the internal states of the working copy database. This is the actual
Cleanup command you know from older TortoiseSVN clients or other SVN clients.

Break write locks
If checked, all write locks are removed from the working copy database. For most situations, this is required
for the cleanup to work!

Only uncheck this option if the working copy is used by other users/clients at the time. But if the cleanup then
fails, you have to check this option for the cleanup to succeed.

Fix time stamps
Changes all file times to the time of the last commit.

Vacuum pristine copies
Removes unused pristine copies and compresses all remaining pristine copies of working copy files.

Refresh shell overlays
Sometimes the shell overlays, especially on the tree view on the left side of the explorer don't show the current
status, or the status cache failed to recognize changes. In this situation, you can use this command to force
a refresh.

Include externals
If this is checked, then all actions are done for all files and folders included with the svn:externals
property as well.

Daily Use Guide

81

Delete unversioned files and folders, Delete ignored files and folders
This is a fast and easy way to remove all generated files in your working copy. All files and folders that are
not versioned are moved to the trash bin.

Note: you can also do the same from the TortoiseSVN → Revert dialog. There you also get a list of all the
unversioned files and folders to select for removal.

Revert all changes recursively
This command reverts all your local modifications which are not committed yet.

Note: it's better to use the TortoiseSVN → Revert command instead, because there you can first see and
select the files which you want to revert.

4.18. Project Settings

4.18.1. Subversion Properties

Figure 4.37. Subversion property page

You can read and set the Subversion properties from the Windows properties dialog, but also from TortoiseSVN

→ properties and within TortoiseSVN's status lists, from Context menu → properties.

You can add your own properties, or some properties with a special meaning in Subversion. These begin with
svn:. svn:externals is such a property; see how to handle externals in Section 4.19, “External Items”.

4.18.1.1. svn:keywords

Subversion supports CVS-like keyword expansion which can be used to embed filename and revision information
within the file itself. Keywords currently supported are:

$Date$
Date of last known commit. This is based on information obtained when you update your working copy. It
does not check the repository to find more recent changes.

$Revision$
Revision of last known commit.

$Author$
Author who made the last known commit.

Daily Use Guide

82

$HeadURL$
The full URL of this file in the repository.

Id
A compressed combination of the previous four keywords.

To find out how to use these keywords, look at the svn:keywords section [http://svnbook.red-bean.com/
en/1.8/svn.advanced.props.special.keywords.html] in the Subversion book, which gives a full description of these
keywords and how to enable and use them.

For more information about properties in Subversion see the Special Properties [http://svnbook.red-bean.com/
en/1.8/svn.advanced.props.html].

4.18.1.2. Adding and Editing Properties

Figure 4.38. Adding properties

To add a new property, first click on New.... Select the required property name from the menu, and then fill in the
required information in the specific property dialog. These specific property dialogs are described in more detail
in Section 4.18.3, “Property Editors”.

To add a property that doesn't have its own dialog, choose Advanced from the New... menu. Then either select
an existing property in the combo box or enter a custom property name.

If you want to apply a property to many items at once, select the files/folders in explorer, then select Context

menu → properties.

http://svnbook.red-bean.com/en/1.8/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.html

Daily Use Guide

83

If you want to apply the property to every file and folder in the hierarchy below the current folder, check the
Recursive checkbox.

If you wish to edit an existing property, select that property from the list of existing properties, then click on Edit....

If you wish to remove an existing property, select that property from the list of existing properties, then click on
Remove.

The svn:externals property can be used to pull in other projects from the same repository or a completely
different repository. For more information, read Section 4.19, “External Items”.

Edit properties at HEAD revision

Because properties are versioned, you cannot edit the properties of previous revisions. If you look
at properties from the log dialog, or from a non-HEAD revision in the repository browser, you will
see a list of properties and values, but no edit controls.

4.18.1.3. Exporting and Importing Properties

Often you will find yourself applying the same set of properties many times, for example bugtraq:logregex.
To simplify the process of copying properties from one project to another, you can use the Export/Import feature.

From the file or folder where the properties are already set, use TortoiseSVN → properties, select the properties
you wish to export and click on Export.... You will be prompted for a filename where the property names and
values will be saved.

From the folder(s) where you wish to apply these properties, use TortoiseSVN → properties and click on
Import.... You will be prompted for a filename to import from, so navigate to the place you saved the export file
previously and select it. The properties will be added to the folders non-recursively.

If you want to add properties to a tree recursively, follow the steps above, then in the property dialog select each
property in turn, click on Edit..., check the Apply property recursively box and click on OK.

The Import file format is binary and proprietary to TortoiseSVN. Its only purpose is to transfer properties using
Import and Export, so there is no need to edit these files.

4.18.1.4. Binary Properties

TortoiseSVN can handle binary property values using files. To read a binary property value, Save... to a file.
To set a binary value, use a hex editor or other appropriate tool to create a file with the content you require, then
Load... from that file.

Although binary properties are not often used, they can be useful in some applications. For example if you are
storing huge graphics files, or if the application used to load the file is huge, you might want to store a thumbnail
as a property so you can obtain a preview quickly.

4.18.1.5. Automatic property setting

You can configure Subversion and TortoiseSVN to set properties automatically on files and folders when they are
added to the repository. There are two ways of doing this.

You can edit the Subversion configuration file to enable this feature on your client. The General page of
TortoiseSVN's settings dialog has an edit button to take you there directly. The config file is a simple text file
which controls some of Subversion's workings. You need to change two things: firstly in the section headed
miscellany uncomment the line enable-auto-props = yes. Secondly you need to edit the section
below to define which properties you want added to which file types. This method is a standard Subversion feature
and works with any Subversion client. However it has to be defined on each client individually - there is no way
to propagate these settings from the repository.

Daily Use Guide

84

An alternative method is to set the tsvn:autoprops property on folders, as described in the next section. This
method only works for TortoiseSVN clients, but it does get propagated to all working copies on update.

As of Subversion 1.8, you can also set the property svn:auto-props on the root folder. The property value
is automatically inherited by all child items.

Whichever method you choose, you should note that auto-props are only applied to files at the time they are added
to the working copy. Auto-props will never change the properties of files which are already versioned.

If you want to be absolutely sure that new files have the correct properties applied, you should set up a repository
pre-commit hook to reject commits where the required properties are not set.

Commit properties

Subversion properties are versioned. After you change or add a property you have to commit your
changes.

Conflicts on properties

If there's a conflict on committing the changes, because another user has changed the same property,
Subversion generates a .prej file. Delete this file after you have resolved the conflict.

4.18.2. TortoiseSVN Project Properties

TortoiseSVN has a few special properties of its own, and these begin with tsvn:.

• tsvn:logminsize sets the minimum length of a log message for a commit. If you enter a shorter message
than specified here, the commit is disabled. This feature is very useful for reminding you to supply a proper
descriptive message for every commit. If this property is not set, or the value is zero, empty log messages are
allowed.

tsvn:lockmsgminsize sets the minimum length of a lock message. If you enter a shorter message than
specified here, the lock is disabled. This feature is very useful for reminding you to supply a proper descriptive
message for every lock you get. If this property is not set, or the value is zero, empty lock messages are allowed.

• tsvn:logwidthmarker is used with projects which require log messages to be formatted with some
maximum width (typically 80 characters) before a line break. Setting this property to a non-zero will do 2 things
in the log message entry dialog: it places a marker to indicate the maximum width, and it disables word wrap
in the display, so that you can see whether the text you entered is too long. Note: this feature will only work
correctly if you have a fixed-width font selected for log messages.

• tsvn:logtemplate is used with projects which have rules about log message formatting. The property
holds a multi-line text string which will be inserted in the commit message box when you start a commit. You
can then edit it to include the required information. Note: if you are also using tsvn:logminsize, be sure
to set the length longer than the template or you will lose the protection mechanism.

There are also action specific templates which you can use instead of tsvn:logtemplate. The action
specific templates are used if set, but tsvn:logtemplate will be used if no action specific template is set.

The action specific templates are:

• tsvn:logtemplatecommit is used for all commits from a working copy.

• tsvn:logtemplatebranch is used when you create a branch/tag, or when you copy files or folders
directly in the repository browser.

• tsvn:logtemplateimport is used for imports.

Daily Use Guide

85

• tsvn:logtemplatedelete is used when deleting items directly in the repository browser.

• tsvn:logtemplatemove is used when renaming or moving items in the repository browser.

• tsvn:logtemplatemkdir is used when creating directories in the repository browser.

• tsvn:logtemplatepropset is used when modifying properties in the repository browser.

• tsvn:logtemplatelock is used when getting a lock.

• Subversion allows you to set “autoprops” which will be applied to newly added or imported files, based on the
file extension. This depends on every client having set appropriate autoprops in their Subversion configuration
file. tsvn:autoprops can be set on folders and these will be merged with the user's local autoprops when
importing or adding files. The format is the same as for Subversion autoprops, e.g. *.sh = svn:eol-
style=native;svn:executable sets two properties on files with the .sh extension.

If there is a conflict between the local autoprops and tsvn:autoprops, the project settings take precedence
because they are specific to that project.

As of Subversion 1.8, you should use the property svn:auto-props instead of tsvn:autoprops since
this has the very same functionality but works with all svn clients and is not specific to TortoiseSVN.

• In the Commit dialog you have the option to paste in the list of changed files, including the status of each file
(added, modified, etc). tsvn:logfilelistenglish defines whether the file status is inserted in English
or in the localized language. If the property is not set, the default is true.

• TortoiseSVN can use a spell checker. On Windows 10, the spell checker of the OS is used. On earlier Windows
versions, it can use spell checker modules which are also used by OpenOffice and Mozilla. If you have those
installed this property will determine which spell checker to use, i.e. in which language the log messages for your
project should be written. tsvn:projectlanguage sets the language module the spell checking engine
should use when you enter a log message. You can find the values for your language on this page: MSDN:
Language Identifiers [http://msdn2.microsoft.com/en-us/library/ms776260.aspx].

You can enter this value in decimal, or in hexadecimal if prefixed with 0x. For example English (US) can be
entered as 0x0409 or 1033.

• The property tsvn:logsummary is used to extract a portion of the log message which is then shown in the
log dialog as the log message summary.

The value of the tsvn:logsummary property must be set to a one line regex string which contains one regex
group. Whatever matches that group is used as the summary.

An example: \[SUMMARY\]:\s+(.*) Will catch everything after “[SUMMARY]” in the log message and
use that as the summary.

• The property tsvn:logrevregex defines a regular expression which matches references to revisions in a
log message. This is used in the log dialog to turn such references into links which when clicked will either
scroll to that revision (if the revision is already shown in the log dialog, or if it's available from the log cache)
or open a new log dialog showing that revision.

The regular expression must match the whole reference, not just the revision number. The revision number is
extracted from the matched reference string automatically.

If this property is not set, a default regular expression is used to link revision references.

• There are several properties available to configure client-side hook scripts. Each property is for one specific
hook script type.

The available properties/hook-scripts are

• tsvn:startcommithook

http://msdn2.microsoft.com/en-us/library/ms776260.aspx
http://msdn2.microsoft.com/en-us/library/ms776260.aspx
http://msdn2.microsoft.com/en-us/library/ms776260.aspx

Daily Use Guide

86

• tsvn:precommithook

• tsvn:postcommithook

• tsvn:startupdatehook

• tsvn:preupdatehook

• tsvn:postupdatehook

• tsvn:prelockhook

• tsvn:postlockhook

The parameters are the same as if you would configure the hook scripts in the settings dialog. See Section 4.31.8,
“Client Side Hook Scripts” for the details.

Since not every user has his or her working copy checked out at the same location with the same name,
you can configure a script/tool to execute that resides in your working copy by specifying the URL in the
repository instead, using %REPOROOT% as the part of the URL to the repository root. For example, if your
hook script is in your working copy under contrib/hook-scripts/client-side/checkyear.js,
you would specify the path to the script as %REPOROOT%/trunk/contrib/hook-scripts/client-
side/checkyear.js. This way even if you move your repository to another server you do not have to
adjust the hook script properties.

Instead of %REPOROOT% you can also specify %REPOROOT+%. The + is used to insert any number of folder
paths necessary to find the script. This is useful if you want to specify your script so that if you create a branch
the script is still found even though the url of the working copy is now different. Using the example above,
you would specify the path to the script as %REPOROOT+%/contrib/hook-scripts/client-side/
checkyear.js.

The following screenshot shows how the script to check for current copyright years in source file headers is
configured for TortoiseSVN.

Figure 4.39. Property dialog for hook scripts

• When you want to add a new property, you can either pick one from the list in the combo box, or you can
enter any property name you like. If your project uses some custom properties, and you want those properties
to appear in the list in the combo box (to avoid typos when you enter a property name), you can create a list of
your custom properties using tsvn:userfileproperties and tsvn:userdirproperties. Apply
these properties to a folder. When you go to edit the properties of any child item, your custom properties will
appear in the list of pre-defined property names.

Daily Use Guide

87

You can also specify whether a custom dialog is used to add/edit your property. TortoiseSVN offers four
different dialog, depending on the type of your property.

bool
If your property can only have two states, e.g., true and false, then you can configure your property as a
bool type.

Figure 4.40. Property dialog boolean user types

Specify your property like this:

propertyname=bool;labeltext(YESVALUE;NOVALUE;Checkboxtext)

the labeltext is the text shown in the dialog above the checkbox where you can explain the purpose
and use of the property. The other parameters should be self explanatory.

state
If your property represents one of many possible states, e.g., yes, no, maybe, then you can configure
your property as a state

Daily Use Guide

88

Figure 4.41. Property dialog state user types

property like this:

propertyname=state;labeltext(DEFVAL;VAL1;TEXT1;VAL2;TEXT2;VAL3;TEXT3;...)

The parameters are the same as for the bool property, with DEFVAL being the default value to be used if
the property isn't set yet or has a value that's not configured.

For up to three different values, the dialog shows up to three radio buttons. If there are more values
configured, it uses a combo box from where the user can select the required state.

singleline
For properties that consist of one line of text, use the singleline property type:

Figure 4.42. Property dialog single-line user types

propertyname=singleline;labeltext(regex)

the regex specifies a regular expression which is used to validate (match) the text the user entered. If the
text does not match the regex, then the user is shown an error and the property isn't set.

multiline
For properties that consist of multiple lines of text, use the multiline property type:

Daily Use Guide

89

Figure 4.43. Property dialog multi-line user types

propertyname=multiline;labeltext(regex)

the regex specifies a regular expression which is used to validate (match) the text the user entered. Don't
forget to include the newline (\n) character in the regex!

The screenshots above were made with the following tsvn:userdirproperties:

my:boolprop=bool;This is a bool type property. Either check or uncheck it.(true;false;my bool prop)
my:stateprop1=state;This is a state property. Select one of the two states.(true;true;true value;false;false value)
my:stateprop2=state;This is a state property. Select one of the three states.(maybe;true;answer is correct;false;answer is wrong;maybe;not answered)
my:stateprop3=state;Specify the day to set this property.(1;1;Monday;2;Tuesday;3;Wednesday;4;Thursday;5;Friday;6;Saturday;7;Sunday)
my:singlelineprop=singleline;enter a small comment(.*)
my:multilineprop=multiline;copy and paste a full chapter here(.*)

TortoiseSVN can integrate with some bug tracking tools. This uses project properties that start with bugtraq:.
Read Section 4.29, “Integration with Bug Tracking Systems / Issue Trackers” for further information.

It can also integrate with some web-based repository browsers, using project properties that start with
webviewer:. Read Section 4.30, “Integration with Web-based Repository Viewers” for further information.

Set the project properties on folders

These special project properties must be set on folders for the system to work. When you use a
TortoiseSVN command which uses these properties, the properties are read from the folder you
clicked on. If the properties are not found there, TortoiseSVN will search upwards through the folder
tree to find them until it comes to an unversioned folder, or the tree root (e.g. C:\) is found. If
you can be sure that each user checks out only from e.g trunk/ and not some sub-folder, then
it is sufficient to set the properties on trunk/. If you can't be sure, you should set the properties
recursively on each sub-folder. If you set the same property but you use different values at different
depths in your project hierarchy then you will get different results depending on where you click
in the folder structure.

For project properties only, i.e. tsvn:, bugtraq: and webviewer: you can use the Recursive
checkbox to set the property to all sub-folders in the hierarchy, without also setting it on all files.

When you add new sub-folders to a working copy using TortoiseSVN, any project properties present in the parent
folder will automatically be added to the new child folder too.

Daily Use Guide

90

Limitations Using the Repository Browser

Fetching properties remotely is a slow operation, so some of the features described above will not
work in the repository browser as they do in a working copy.

• When you add a property using the repo browser, only the standard svn: properties are offered
in the pre-defined list. Any other property name must be entered manually.

• Properties cannot be set or deleted recursively using the repo browser.

• Project properties will not be propagated automatically when a child folder is added using the
repo browser.

• tsvn:autoprops will not set properties on files which are added using the repo browser.

Caution

Although TortoiseSVN's project properties are extremely useful, they only work with TortoiseSVN,
and some will only work in newer versions of TortoiseSVN. If people working on your project use
a variety of Subversion clients, or possibly have old versions of TortoiseSVN, you may want to use
repository hooks to enforce project policies. project properties can only help to implement a policy,
they cannot enforce it.

4.18.3. Property Editors

Some properties have to use specific values, or be formatted in a specific way in order to be used for automation.
To help get the formatting correct, TortoiseSVN presents edit dialogs for some particular properties which show
the possible values or break the property into its individual components.

4.18.3.1. External Content

Figure 4.44. svn:externals property page

The svn:externals property can be used to pull in other projects from the same repository or a completely
different repository as described in Section 4.19, “External Items”.

You need to define the name of the sub-folder that the external folder is checked out as, and the Subversion URL
of the external item. You can check out an external at its HEAD revision, so when the external item changes in
the repository, your working copy will receive those changes on update. However, if you want the external to
reference a particular stable point then you can specify the specific revision to use. IN this case you may also

Daily Use Guide

91

want to specify the same revision as a peg revision. If the external item is renamed at some point in the future
then Subversion will not be able to update this item in your working copy. By specifying a peg revision you tell
Subversion to look for an item that had that name at the peg revision rather than at HEAD.

The button Find HEAD-Revision fetches the HEAD revision of every external URL and shows that HEAD
revision in the rightmost column. After the HEAD revision is known, a simple right click on an external gives
you the command to peg the selected externals to their explicit HEAD revision. In case the HEAD revision is not
known yet, the right click command will fetch the HEAD revision first.

4.18.3.2. SVN Keywords

Figure 4.45. svn:keywords property page

Select the keywords that you would like to be expanded in your file.

4.18.3.3. EOL Style

Figure 4.46. svn:eol-style property page

Select the end-of-line style that you wish to use and TortoiseSVN will use the correct property value.

Daily Use Guide

92

4.18.3.4. Issue Tracker Integration

Figure 4.47. tsvn:bugtraq property page

Daily Use Guide

93

4.18.3.5. Log Message Sizes

Figure 4.48. Size of log messages property page

These 3 properties control the formatting of log messages. The first 2 disable the OK in the commit or lock dialogs
until the message meets the minimum length. The border position shows a marker at the given column width as a
guide for projects which have width limits on their log messages. Setting a value to zero will delete the property.

4.18.3.6. Project Language

Figure 4.49. Language property page

Choose the language to use for spell-checking log messages in the commit dialog. The file lists checkbox comes
into effect when you right click in the log message pane and select Paste file list. By default the Subversion status
will be shown in your local language. When this box is checked the status is always given in English, for projects
which require English-only log messages.

Daily Use Guide

94

4.18.3.7. MIME-type

Figure 4.50. svn:mime-type property page

4.18.3.8. svn:needs-lock

Figure 4.51. svn:needs-lock property page

This property simply controls whether a file will be checked out as read-only if there is no lock held for it in the
working copy.

4.18.3.9. svn:executable

Figure 4.52. svn:executable property page

This property controls whether a file will be given executable status when checked out on a Unix/Linux system.
It has no effect on a Windows checkout.

4.18.3.10. Merge log message templates

Whenever revisions are merged into a working copy, TortoiseSVN generates a log message from all the merged
revisions. Those are then available from the Recent Messages button in the commit dialog.

You can customize that generated message with the following properties:

Daily Use Guide

95

Figure 4.53. Property dialog merge log message templates

tsvn:mergelogtemplatetitle, tsvn:mergelogtemplatereversetitle
This property specifies the first part of the generated log message. The following keywords can be used:

{revisions}
A comma separated list of the merged revisions, e.g., 3, 5, 6, 7

{revisionsr}
Like {revisions}, but with each revision preceded with an r, e.g., r3, r5, r6, r7

{revrange}
A comma separated list of the merged revisions, grouped into ranges if possible, e.g., 3, 5-7

{mergeurl}
The source URL of the merge, i.e., where the revisions are merged from.

The default value for this string is Merged revision(s) {revrange} from {mergeurl}: with
a newline at the end.

tsvn:mergelogtemplatemsg
This property specifies how the text for each merged revision should look like. The following keywords can
be used:

{msg}
The log message of the merged revision, as it was entered.

Daily Use Guide

96

{msgoneline}
Like {msg}, but all newlines are replaced with a space, so that the whole log message appears on one
single line.

{author}
The author of the merged revision.

{rev}
The merged revision itself.

{bugids}
The bug IDs of the merged revision, if there are any.

tsvn:mergelogtemplatemsgtitlebottom
This property specifies the position of the title string specified with the tsvn:mergelogtemplatetitle
or tsvn:mergelogtemplatereversetitle. If the property is set to yes or true, then the title string
is appended at the bottom instead of the top.

Important

This only works if the merged revisions are already in the log cache. If you have disabled the
log cache or not shown the log first before the merge, the generated message won't contain any
information about the merged revisions.

4.19. External Items

Sometimes it is useful to construct a working copy that is made out of a number of different checkouts. For
example, you may want different files or subdirectories to come from different locations in a repository, or
perhaps from different repositories altogether. If you want every user to have the same layout, you can define the
svn:externals properties to pull in the specified resource at the locations where they are needed.

4.19.1. External Folders

Let's say you check out a working copy of /project1 to D:\dev\project1. Select the folder D:\dev

\project1, right click and choose Windows Menu → Properties from the context menu. The Properties
Dialog comes up. Then go to the Subversion tab. There, you can set properties. Click Properties.... In the
properties dialog, either double click on the svn:externals if it already exists, or click on the New... button
and select externals from the menu. To add a new external, click the New... and then fill in the required
information in the shown dialog.

Caution

URLs must be properly escaped or they will not work, e.g. you must replace each space with %20.

If you want the local path to include spaces or other special characters, you can enclose it in double quotes, or
you can use the \ (backslash) character as a Unix shell style escape character preceding any special character. Of
course this also means that you must use / (forward slash) as a path delimiter. Note that this behaviour is new in
Subversion 1.6 and will not work with older clients.

Use explicit revision numbers

You should strongly consider using explicit revision numbers in all of your externals definitions,
as described above. Doing so means that you get to decide when to pull down a different snapshot
of external information, and exactly which snapshot to pull. Besides the common sense aspect of
not being surprised by changes to third-party repositories that you might not have any control over,
using explicit revision numbers also means that as you backdate your working copy to a previous

Daily Use Guide

97

revision, your externals definitions will also revert to the way they looked in that previous revision,
which in turn means that the external working copies will be updated to match the way they looked
back when your repository was at that previous revision. For software projects, this could be the
difference between a successful and a failed build of an older snapshot of your complex code base.

The edit dialog for svn:externals properties allows you to select the externals and automatically
set them explicitly to the HEAD revision.

If the external project is in the same repository, any changes you make there will be included in the commit list
when you commit your main project.

If the external project is in a different repository, any changes you make to the external project will be shown or
indicated when you commit the main project, but you have to commit those external changes separately.

If you use absolute URLs in svn:externals definitions and you have to relocate your working copy (i.e., if
the URL of your repository changes), then your externals won't change and might not work anymore.

To avoid such problems, Subversion clients version 1.5 and higher support relative external URLs. Four different
methods of specifying a relative URL are supported. In the following examples, assume we have two repositories:
one at http://example.com/svn/repos-1 and another at http://example.com/svn/repos-2.
We have a checkout of http://example.com/svn/repos-1/project/trunk into C:\Working and
the svn:externals property is set on trunk.

Relative to parent directory
These URLs always begin with the string ../ for example:

../../widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo into C:\Working
\common\foo-widget.

Note that the URL is relative to the URL of the directory with the svn:externals property, not to the
directory where the external is written to disk.

Relative to repository root
These URLs always begin with the string ^/ for example:

^/widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo into C:\Working
\common\foo-widget.

You can easily refer to other repositories with the same SVNParentPath (a common directory holding
several repositories). For example:

^/../repos-2/hammers/claw common/claw-hammer

This will extract http://example.com/svn/repos-2/hammers/claw into C:\Working
\common\claw-hammer.

Relative to scheme
URLs beginning with the string // copy only the scheme part of the URL. This is useful when the same
hostname must the accessed with different schemes depending upon network location; e.g. clients in the
intranet use http:// while external clients use svn+ssh://. For example:

Daily Use Guide

98

//example.com/svn/repos-1/widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo or svn+ssh://
example.com/svn/repos-1/widgets/foo depending on which method was used to checkout C:
\Working.

Relative to the server's hostname
URLs beginning with the string / copy the scheme and the hostname part of the URL, for example:

/svn/repos-1/widgets/foo common/foo-widget

This will extract http://example.com/svn/repos-1/widgets/foo into C:\Working
\common\foo-widget. But if you checkout your working copy from another server at svn+ssh://
another.mirror.net/svn/repos-1/project1/trunk then the external reference will extract
svn+ssh://another.mirror.net/svn/repos-1/widgets/foo.

You can also specify a peg and operative revision for the URL if required. To learn more about
peg and operative revisions, please read the corresponding chapter [http://svnbook.red-bean.com/en/1.8/
svn.advanced.pegrevs.html] in the Subversion book.

Important

If you specify the target folder for the external as a subfolder like in the examples above, make sure
that all folders in between are versioned as well. So for the examples above, the folder common
should be versioned!

While the external will work in most situations properly if folders in between are not versioned, there
are some operations that won't work as you expect. And the status overlay icons in explorer will also
not show the correct status.

If you need more information how TortoiseSVN handles Properties read Section 4.18, “Project Settings”.

To find out about different methods of accessing common sub-projects read Section B.6, “Include a common sub-
project”.

4.19.2. External Files

As of Subversion 1.6 you can add single file externals to your working copy using the same syntax as for folders.
However, there are some restrictions.

• The path to the file external must be a direct child of the folder where you set the svn:externals property.

• The URL for a file external must be in the same repository as the URL that the file external will be inserted
into; inter-repository file externals are not supported.

A file external behaves just like any other versioned file in many respects, but they cannot be moved or deleted
using the normal commands; the svn:externals property must be modified instead.

4.19.3. Creating externals via drag and drop

If you already have a working copy of the files or folders you want to include as externals in another working
copy, you can simply add those via drag and drop from the windows explorer.

Simply right drag the file or folder from one working copy to where you want those to be included as externals.
A context menu appears when you release the mouse button: SVN Add as externals here if you click on that
context menu entry, the svn:externals property is automatically added. All you have to do after that is commit
the property changes and update to get those externals properly included in your working copy.

http://svnbook.red-bean.com/en/1.8/svn.advanced.pegrevs.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.pegrevs.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.pegrevs.html

Daily Use Guide

99

4.20. Branching / Tagging

One of the features of version control systems is the ability to isolate changes onto a separate line of development.
This line is known as a branch. Branches are often used to try out new features without disturbing the main line
of development with compiler errors and bugs. As soon as the new feature is stable enough then the development
branch is merged back into the main branch (trunk).

Another feature of version control systems is the ability to mark particular revisions (e.g. a release version), so
you can at any time recreate a certain build or environment. This process is known as tagging.

Subversion does not have special commands for branching or tagging, but uses so-called “cheap copies” instead.
Cheap copies are similar to hard links in Unix, which means that instead of making a complete copy in the
repository, an internal link is created, pointing to a specific tree/revision. As a result branches and tags are very
quick to create, and take up almost no extra space in the repository.

4.20.1. Creating a Branch or Tag

If you have imported your project with the recommended directory structure, creating a branch or tag version is
very simple:

Figure 4.54. The Branch/Tag Dialog

Daily Use Guide

100

Select the folder in your working copy which you want to copy to a branch or tag, then select the command

TortoiseSVN → Branch/Tag....

The default destination URL for the new branch will be the source URL on which your working copy is based.
You will need to edit that URL to the new path for your branch/tag. So instead of

http://svn.collab.net/repos/ProjectName/trunk

you might now use something like

http://svn.collab.net/repos/ProjectName/tags/Release_1.10

If you can't remember the naming convention you used last time, click the button on the right to open the repository
browser so you can view the existing repository structure.

intermediate folders

When you specify the target URL, all the folders up to the last one must already exist or you will
get an error message. In the above example, the URL http://svn.collab.net/repos/
ProjectName/tags/ must exist to create the Release_1.10 tag.

However if you want to create a branch/tag to an URL that has intermediate folders that don't exist
yet you can check the option Create intermediate folders at the bottom of the dialog. If
that option is activated, all intermediate folders are automatically created.

Note that this option is disabled by default to avoid typos. For example, if you typed the target URL
as http://svn.collab.net/repos/ProjectName/Tags/Release_1.10 instead of
http://svn.collab.net/repos/ProjectName/tags/Release_1.10, you would
get an error with the option disabled, but with the option enabled a folder Tags would be
automatically created, and you would end up with a folder Tags and a folder tags.

Now you have to select the source of the copy. Here you have three options:

HEAD revision in the repository
The new branch is copied directly in the repository from the HEAD revision. No data needs to be transferred
from your working copy, and the branch is created very quickly.

Specific revision in the repository
The new branch is copied directly in the repository but you can choose an older revision. This is useful if you
forgot to make a tag when you released your project last week. If you can't remember the revision number,
click the button on the right to show the revision log, and select the revision number from there. Again no
data is transferred from your working copy, and the branch is created very quickly.

Working copy
The new branch is an identical copy of your local working copy. If you have updated some files to an older
revision in your WC, or if you have made local changes, that is exactly what goes into the copy. Naturally
this sort of complex tag may involve transferring data from your WC back to the repository if it does not
exist there already.

If you want your working copy to be switched to the newly created branch automatically, use the Switch working
copy to new branch/tag checkbox. But if you do that, first make sure that your working copy does not contain
modifications. If it does, those changes will be merged into the branch WC when you switch.

If your working copy has other projects included with svn:externals properties, those externals will be listed
at the bottom of the branch/tag dialog. For each external, the target path and the source URL is shown.

Daily Use Guide

101

If you want to make sure that the new tag always is in a consistent state, check all the externals to have their
revisions pinned. If you don't check the externals and those externals point to a HEAD revision which might change
in the future, checking out the new tag will check out that HEAD revision of the external and your tag might not
compile anymore. So it's always a good idea to set the externals to an explicit revision when creating a tag.

The externals are automatically pinned to either the current HEAD revision or the working copy BASE revision,
depending on the source of the branch/tag:

Copy Source Pinned Revision

HEAD revision in the repository external's repos HEAD revision

Specific revision in repository external's repos HEAD revision

Working copy external's WC BASE revision

Table 4.1. Pinned Revision

externals within externals

If a project that is included as an external has itself included externals, then those will not be tagged!
Only externals that are direct children can be tagged.

Press OK to commit the new copy to the repository. Don't forget to supply a log message. Note that the copy is
created inside the repository.

Note that unless you opted to switch your working copy to the newly created branch, creating a Branch or Tag
does not affect your working copy. Even if you create the branch from your WC, those changes are committed to
the new branch, not to the trunk, so your WC may still be marked as modified with respect to the trunk.

4.20.2. Other ways to create a branch or tag

You can also create a branch or tag without having a working copy. To do that, open the repository browser. You
can there drag folders to a new location. You have to hold down the Ctrl key while you drag to create a copy,
otherwise the folder gets moved, not copied.

You can also drag a folder with the right mouse button. Once you release the mouse button you can choose from
the context menu whether you want the folder to be moved or copied. Of course to create a branch or tag you
must copy the folder, not move it.

Yet another way is from the log dialog. You can show the log dialog for e.g. trunk, select a revision (either the
HEAD revision at the very top or an earlier revision), right click and choose create branch/tag from revision....

4.20.3. To Checkout or to Switch...

...that is (not really) the question. While a checkout downloads everything from the desired branch in the repository

to your working directory, TortoiseSVN → Switch... only transfers the changed data to your working copy. Good
for the network load, good for your patience. :-)

To be able to work with your freshly generated branch or tag you have several ways to handle it. You can:

• TortoiseSVN → Checkout to make a fresh checkout in an empty folder. You can check out to any location
on your local disk and you can create as many working copies from your repository as you like.

• Switch your current working copy to the newly created copy in the repository. Again select the top level folder

of your project and use TortoiseSVN → Switch... from the context menu.

Daily Use Guide

102

In the next dialog enter the URL of the branch you just created. Select the Head Revision radio button and
click on OK. Your working copy is switched to the new branch/tag.

Switch works just like Update in that it never discards your local changes. Any changes you have made to your
working copy which have not yet been committed will be merged when you do the Switch. If you do not want
this to happen then you must either commit the changes before switching, or revert your working copy to an
already-committed revision (typically HEAD).

• If you want to work on trunk and branch, but don't want the expense of a fresh checkout, you can use Windows

Explorer to make a copy of your trunk checkout in another folder, then TortoiseSVN → Switch... that copy
to your new branch.

Figure 4.55. The Switch Dialog

Although Subversion itself makes no distinction between tags and branches, the way they are typically used differs
a bit.

• Tags are typically used to create a static snapshot of the project at a particular stage. As such they are not
normally used for development - that's what branches are for, which is the reason we recommended the /
trunk /branches /tags repository structure in the first place. Working on a tag revision is not a good
idea, but because your local files are not write protected there is nothing to stop you doing this by mistake.
However, if you try to commit to a path in the repository which contains /tags/, TortoiseSVN will warn you.

• It may be that you need to make further changes to a release which you have already tagged. The correct way to
handle this is to create a new branch from the tag first and commit the branch. Do your Changes on this branch
and then create a new tag from this new branch, e.g. Version_1.0.1.

• If you modify a working copy created from a branch and commit, then all changes go to the new branch and
not the trunk. Only the modifications are stored. The rest remains a cheap copy.

4.21. Merging

Where branches are used to maintain separate lines of development, at some stage you will want to merge the
changes made on one branch back into the trunk, or vice versa.

It is important to understand how branching and merging works in Subversion before you start using it, as it can
become quite complex. It is highly recommended that you read the chapter Branching and Merging [http://

http://svnbook.red-bean.com/en/1.8/svn.branchmerge.html
http://svnbook.red-bean.com/en/1.8/svn.branchmerge.html

Daily Use Guide

103

svnbook.red-bean.com/en/1.8/svn.branchmerge.html] in the Subversion book, which gives a full description and
many examples of how it is used.

The next point to note is that merging always takes place within a working copy. If you want to merge changes
into a branch, you have to have a working copy for that branch checked out, and invoke the merge wizard from

that working copy using TortoiseSVN → Merge....

In general it is a good idea to perform a merge into an unmodified working copy. If you have made other changes
in your WC, commit those first. If the merge does not go as you expect, you may want to revert the changes, and
the Revert command will discard all changes including any you made before the merge.

There are three common use cases for merging which are handled in slightly different ways, as described below.
The first page of the merge wizard asks you to select the method you need.

Merge a range of revisions
This method covers the case when you have made one or more revisions to a branch (or to the trunk) and you
want to port those changes across to a different branch.

What you are asking Subversion to do is this: “ Calculate the changes necessary to get [FROM] revision 1 of
branch A [TO] revision 7 of branch A, and apply those changes to my working copy (of trunk or branch B). ”

If you leave the revision range empty, Subversion uses the merge-tracking features to calculate the correct
revision range to use. This is known as a reintegrate or automatic merge.

Merge two different trees
This is a more general case of the reintegrate method. What you are asking Subversion to do is: “ Calculate
the changes necessary to get [FROM] the head revision of the trunk [TO] the head revision of the branch,
and apply those changes to my working copy (of the trunk). ” The net result is that trunk now looks exactly
like the branch.

If your server/repository does not support merge-tracking then this is the only way to merge a branch back
to trunk. Another use case occurs when you are using vendor branches and you need to merge the changes
following a new vendor drop into your trunk code. For more information read the chapter on vendor branches
[http://svnbook.red-bean.com/en/1.8/svn.advanced.vendorbr.html] in the Subversion Book.

4.21.1. Merging a Range of Revisions

http://svnbook.red-bean.com/en/1.8/svn.branchmerge.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.vendorbr.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.vendorbr.html

Daily Use Guide

104

Figure 4.56. The Merge Wizard - Select Revision Range

In the From: field enter the full folder URL of the branch or tag containing the changes you want to port into your
working copy. You may also click ... to browse the repository and find the desired branch. If you have merged
from this branch before, then just use the drop down list which shows a history of previously used URLs.

If you are merging from a renamed or deleted branch then you will have to go back to a revision where that branch
still existed. In this case you will also need to specify that revision as a peg revision in the range of revisions being
merged (see below), otherwise the merge will fail when it can't find that path at HEAD.

In the Revision range to merge field enter the list of revisions you want to merge. This can be a single revision,
a list of specific revisions separated by commas, or a range of revisions separated by a dash, or any combination
of these.

If you need to specify a peg revision for the merge, add the peg revision at the end of the revisions, e.g. 5-7,10@3.
In the above example, the revisions 5,6,7 and 10 would be merged, with 3 being the peg revision.

Important

There is an important difference in the way a revision range is specified with TortoiseSVN compared
to the command line client. The easiest way to visualise it is to think of a fence with posts and fence
panels.

With the command line client you specify the changes to merge using two “fence post” revisions
which specify the before and after points.

Daily Use Guide

105

With TortoiseSVN you specify the changeset to merge using “fence panels”. The reason for this
becomes clear when you use the log dialog to specify revisions to merge, where each revision appears
as a changeset.

If you are merging revisions in chunks, the method shown in the Subversion book will have you
merge 100-200 this time and 200-300 next time. With TortoiseSVN you would merge 100-200 this
time and 201-300 next time.

This difference has generated a lot of heat on the mailing lists. We acknowledge that there is a
difference from the command line client, but we believe that for the majority of GUI users it is easier
to understand the method we have implemented.

The easiest way to select the range of revisions you need is to click on Show Log, as this will list recent changes
with their log comments. If you want to merge the changes from a single revision, just select that revision. If you
want to merge changes from several revisions, then select that range (using the usual Shift-modifier). Click on
OK and the list of revision numbers to merge will be filled in for you.

If you want to merge changes back out of your working copy, to revert a change which has already been committed,
select the revisions to revert and make sure the Reverse merge box is checked.

If you have already merged some changes from this branch, hopefully you will have made a note of the last revision
merged in the log message when you committed the change. In that case, you can use Show Log for the Working
Copy to trace that log message. Remembering that we are thinking of revisions as changesets, you should Use the
revision after the end point of the last merge as the start point for this merge. For example, if you have merged
revisions 37 to 39 last time, then the start point for this merge should be revision 40.

If you are using the merge tracking features of Subversion, you do not need to remember which revisions have
already been merged - Subversion will record that for you. If you leave the revision range blank, all revisions
which have not yet been merged will be included. Read Section 4.21.5, “Merge Tracking” to find out more.

When merge tracking is used, the log dialog will show previously merged revisions, and revisions pre-dating the
common ancestor point, i.e. before the branch was copied, as greyed out. The Hide non-mergeable revisions
checkbox allows you to filter out these revisions completely so you see only the revisions which can be merged.

If other people may be committing changes then be careful about using the HEAD revision. It may not refer to the
revision you think it does if someone else made a commit after your last update.

If you leave the range of revisions empty or have the radio button all revisions checked, then Subversion merges
all not-yet merged revisions. This is known as a reintegrate or automatic merge.

There are some conditions which apply to a reintegrate merge. Firstly, the server must support merge tracking.
The working copy must be of depth infinite (no sparse checkouts), and it must not have any local modifications,
switched items or items that have been updated to revisions other than HEAD. All changes to trunk made during
branch development must have been merged across to the branch (or marked as having been merged). The range
of revisions to merge will be calculated automatically.

Click Next and go to Section 4.21.3, “Merge Options”.

4.21.2. Merging Two Different Trees

Daily Use Guide

106

Figure 4.57. The Merge Wizard - Tree Merge

If you are using this method to merge a feature branch back to trunk, you need to start the merge wizard from
within a working copy of trunk.

In the From: field enter the full folder URL of the trunk. This may sound wrong, but remember that the trunk is
the start point to which you want to add the branch changes. You may also click ... to browse the repository.

In the To: field enter the full folder URL of the feature branch.

In both the From Revision field and the To Revision field, enter the last revision number at which the two trees
were synchronized. If you are sure no-one else is making commits you can use the HEAD revision in both cases. If
there is a chance that someone else may have made a commit since that synchronization, use the specific revision
number to avoid losing more recent commits.

You can also use Show Log to select the revision.

4.21.3. Merge Options

This page of the wizard lets you specify advanced options, before starting the merge process. Most of the time
you can just use the default settings.

You can specify the depth to use for the merge, i.e. how far down into your working copy the merge should go. The
depth terms used are described in Section 4.3.1, “Checkout Depth”. The default depth is Working copy, which
uses the existing depth setting, and is almost always what you want.

Most of the time you want merge to take account of the file's history, so that changes relative to a common ancestor
are merged. Sometimes you may need to merge files which are perhaps related, but not in your repository. For

Daily Use Guide

107

example you may have imported versions 1 and 2 of a third party library into two separate directories. Although
they are logically related, Subversion has no knowledge of this because it only sees the tarballs you imported. If
you attempt to merge the difference between these two trees you would see a complete removal followed by a
complete add. To make Subversion use only path-based differences rather than history-based differences, check
the Ignore ancestry box. Read more about this topic in the Subversion book, Noticing or Ignoring Ancestry
[http://svnbook.red-bean.com/en/1.8/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry].

You can specify the way that line ending and whitespace changes are handled. These options are described in
Section 4.11.2, “Line-end and Whitespace Options”. The default behaviour is to treat all whitespace and line-end
differences as real changes to be merged.

The checkbox marked Force the merge is used to avoid a tree conflict where an incoming delete affects a file
that is either modified locally or not versioned at all. If the file is deleted then there is no way to recover it, which
is why that option is not checked by default.

If you are using merge tracking and you want to mark a revision as having been merged, without actually doing
the merge here, check the Only record the merge checkbox. There are two possible reasons you might want
to do this. It may be that the merge is too complicated for the merge algorithms, so you code the changes by
hand, then mark the change as merged so that the merge tracking algorithm is aware of it. Or you might want to
prevent a particular revision from being merged. Marking it as already merged will prevent the merge occurring
with merge-tracking-aware clients.

Now everything is set up, all you have to do is click on the Merge button. If you want to preview the results Test
Merge simulates the merge operation, but does not modify the working copy at all. It shows you a list of the files
that will be changed by a real merge, and notes files where conflicts may occur. Because merge tracking makes the
merge process a lot more complicated, there is no guaranteed way to find out in advance whether the merge will
complete without conflicts, so files marked as conflicted in a test merge may in fact merge without any problem.

The merge progress dialog shows each stage of the merge, with the revision ranges involved. This may indicate
one more revision than you were expecting. For example if you asked to merge revision 123 the progress dialog
will report “ Merging revisions 122 through 123 ”. To understand this you need to remember that Merge is closely
related to Diff. The merge process works by generating a list of differences between two points in the repository,
and applying those differences to your working copy. The progress dialog is simply showing the start and end
points for the diff.

4.21.4. Reviewing the Merge Results

The merge is now complete. It's a good idea to have a look at the merge and see if it's as expected. Merging is
usually quite complicated. Conflicts often arise if the branch has drifted far from the trunk.

Tip

Whenever revisions are merged into a working copy, TortoiseSVN generates a log message from all
the merged revisions. Those are then available from the Recent Messages button in the commit
dialog.

To customize that generated message, set the corresponding project properties on your working copy.
See Section 4.18.3.10, “Merge log message templates”

For Subversion clients and servers prior to 1.5, no merge information is stored and merged revisions have to be
tracked manually. When you have tested the changes and come to commit this revision, your commit log message
should always include the revision numbers which have been ported in the merge. If you want to apply another
merge at a later time you will need to know what you have already merged, as you do not want to port a change more
than once. For more information about this, refer to Best Practices for Merging [http://svnbook.red-bean.com/
en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac] in the Subversion book.

If your server and all clients are running Subversion 1.5 or higher, the merge tracking facility will record the
revisions merged and avoid a revision being merged more than once. This makes your life much simpler as you
can simply merge the entire revision range each time and know that only new revisions will actually be merged.

http://svnbook.red-bean.com/en/1.8/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.8/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac

Daily Use Guide

108

Branch management is important. If you want to keep this branch up to date with the trunk, you should be sure
to merge often so that the branch and trunk do not drift too far apart. Of course, you should still avoid repeated
merging of changes, as explained above.

Tip

If you have just merged a feature branch back into the trunk, the trunk now contains all the new
feature code, and the branch is obsolete. You can now delete it from the repository if required.

Important

Subversion can't merge a file with a folder and vice versa - only folders to folders and files to files. If
you click on a file and open up the merge dialog, then you have to give a path to a file in that dialog.
If you select a folder and bring up the dialog, then you must specify a folder URL for the merge.

4.21.5. Merge Tracking

Subversion 1.5 introduced facilities for merge tracking. When you merge changes from one tree into another, the
revision numbers merged are stored and this information can be used for several different purposes.

• You can avoid the danger of merging the same revision twice (repeated merge problem). Once a revision is
marked as having been merged, future merges which include that revision in the range will skip over it.

• When you merge a branch back into trunk, the log dialog can show you the branch commits as part of the trunk
log, giving better traceability of changes.

• When you show the log dialog from within the merge dialog, revisions already merged are shown in grey.

• When showing blame information for a file, you can choose to show the original author of merged revisions,
rather than the person who did the merge.

• You can mark revisions as do not merge by including them in the list of merged revisions without actually
doing the merge.

Merge tracking information is stored in the svn:mergeinfo property by the client when it performs a merge.
When the merge is committed the server stores that information in a database, and when you request merge, log or
blame information, the server can respond appropriately. For the system to work properly you must ensure that the
server, the repository and all clients are upgraded. Earlier clients will not store the svn:mergeinfo property
and earlier servers will not provide the information requested by new clients.

Find out more about merge tracking from Subversion's Merge tracking documentation [http://svn.apache.org/
repos/asf/Subversion/trunk/notes/merge-tracking/index.html].

4.21.6. Handling Conflicts after Merge

Important

The text in the conflict resolver dialogs are provided by the SVN library and might therefore not
(yet) be translated as the TortoiseSVN dialogs are. Sorry for that.

Merging does not always go smoothly. Sometimes there is a conflict. TortoiseSVN helps you through this process
by showing the merge conflict dialog.

Figure 4.58. The Merge Conflict Dialog

http://svn.apache.org/repos/asf/Subversion/trunk/notes/merge-tracking/index.html
http://svn.apache.org/repos/asf/Subversion/trunk/notes/merge-tracking/index.html
http://svn.apache.org/repos/asf/Subversion/trunk/notes/merge-tracking/index.html

Daily Use Guide

109

It is likely that some of the changes will have merged smoothly, while other local changes conflict with changes
already committed to the repository. All changes which can be merged are merged. The Merge Conflict dialog
gives you different ways of handling the lines which are in conflict.

For normal conflicts that happen due to changes in the file content or its properties, the dialog shows buttons which
allow you to chose which of the conflicting parts to keep or reject.

Postpone
Don't deal with the conflict now. Let the merge continue and resolve the conflicts after the merge is done.

Accept base
This leaves the file as it was, without neither the changes coming from the merge nor the changes you've
made in your working copy.

Accept incoming
This discards all your local changes and uses the file as it arrives from the merge source.

Reject incoming
This discards all the changes from the merge source and leaves the file with your local edits.

Accept incoming for conflicts
This discards your local changes where they conflict with the changes from the merge source. But it leaves
all your local changes which don't conflict.

Reject conflicts
This discards changes from the merge source which conflict with your local changes. But it keeps all changes
that don't conflict with your local changes.

Mark as resolved
Marks the conflicts as resolved. This button is disabled until you use the button Edit to edit the conflict
manually and save those changes back to the file. Once the changes are saved, the button becomes enabled.

Edit
Starts the merge editor so you can resolve the conflicts manually. Don't forget to save the file so the button
Mark as resolved becomes enabled.

If there's a tree conflict, please first see Section 4.6.3, “Tree Conflicts” about the various types of tree conflicts
and how and why they can happen.

To resolve tree conflicts after a merge, a dialog is shown with various options on how to resolve the conflict:

Figure 4.59. The Merge Tree Conflict Dialog

Since there are various possible tree conflict situations, the dialog will show buttons to resolve those depending
on the specific conflict. The button texts and labels explain what the option to resolve the conflict does. If you're
not sure, either cancel the dialog or use the Postpone button to resolve the conflict later.

4.21.7. Feature Branch Maintenance

When you develop a new feature on a separate branch it is a good idea to work out a policy for re-integration when
the feature is complete. If other work is going on in trunk at the same time you may find that the differences
become significant over time, and merging back becomes a nightmare.

If the feature is relatively simple and development will not take long then you can adopt a simple approach, which
is to keep the branch entirely separate until the feature is complete, then merge the branch changes back into
trunk. In the merge wizard this would be a simple Merge a range of revisions, with the revision range being
the revision span of the branch.

Daily Use Guide

110

If the feature is going to take longer and you need to account for changes in trunk, then you need to keep the
branch synchronised. This simply means that periodically you merge trunk changes into the branch, so that the
branch contains all the trunk changes plus the new feature. The synchronisation process uses Merge a range of
revisions. When the feature is complete then you can merge it back to trunk using either Reintegrate a branch
or Merge two different trees.

Another (fast) way to merge all changes from trunk to the feature branch is to use the TortoiseSVN → Merge
all... from the extended context menu (hold down the Shift key while you right click on the file).

Figure 4.60. The Merge-All Dialog

This dialog is very easy. All you have to do is set the options for the merge, as described in Section 4.21.3, “Merge
Options”. The rest is done by TortoiseSVN automatically using merge tracking.

4.22. Locking

Subversion generally works best without locking, using the “Copy-Modify-Merge” methods described earlier in
Section 2.2.3, “The Copy-Modify-Merge Solution”. However there are a few instances when you may need to
implement some form of locking policy.

• You are using “unmergeable” files, for example, graphics files. If two people change the same file, merging is
not possible, so one of you will lose their changes.

• Your company has always used a locking revision control system in the past and there has been a management
decision that “locking is best”.

Firstly you need to ensure that your Subversion server is upgraded to at least version 1.2. Earlier versions do not
support locking at all. If you are using file:// access, then of course only your client needs to be updated.

The Three Meanings of “Lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” describe a
mechanism for mutual exclusion between users to avoid clashing commits. Unfortunately, there are
two other sorts of “lock” with which Subversion, and therefore this book, sometimes needs to be
concerned.

The second is working copy locks, used internally by Subversion to prevent clashes between
multiple Subversion clients operating on the same working copy. Usually you get these locks

Daily Use Guide

111

whenever a command like update/commit/... is interrupted due to an error. These locks can be
removed by running the cleanup command on the working copy, as described in Section 4.17,
“Cleanup”.

And third, files and folders can get locked if they're in use by another process, for example if you
have a word document opened in Word, that file is locked and can not be accessed by TortoiseSVN.

You can generally forget about these other kinds of locks until something goes wrong that requires
you to care about them. In this book, “lock” means the first sort unless the contrary is either clear
from context or explicitly stated.

4.22.1. How Locking Works in Subversion

By default, nothing is locked and anyone who has commit access can commit changes to any file at any time. Others
will update their working copies periodically and changes in the repository will be merged with local changes.

If you Get a Lock on a file, then only you can commit that file. Commits by all other users will be blocked until
you release the lock. A locked file cannot be modified in any way in the repository, so it cannot be deleted or
renamed either, except by the lock owner.

Important

A lock is not assigned to a specific user, but to a specific user and a working copy. Having a lock in
one working copy also prevents the same user from committing the locked file from another working
copy.

As an example, imagine that user Jon has a working copy on his office PC. There he starts working
on an image, and therefore acquires a lock on that file. When he leaves his office he's not finished yet
with that file, so he doesn't release that lock. Back at home Jon also has a working copy and decides
to work a little more on the project. But he can't modify or commit that same image file, because the
lock for that file resides in his working copy in the office.

However, other users will not necessarily know that you have taken out a lock. Unless they check the lock status
regularly, the first they will know about it is when their commit fails, which in most cases is not very useful. To
make it easier to manage locks, there is a new Subversion property svn:needs-lock. When this property is
set (to any value) on a file, whenever the file is checked out or updated, the local copy is made read-only unless
that working copy holds a lock for the file. This acts as a warning that you should not edit that file unless you have
first acquired a lock. Files which are versioned and read-only are marked with a special overlay in TortoiseSVN
to indicate that you need to acquire a lock before editing.

Locks are recorded by working copy location as well as by owner. If you have several working copies (at home,
at work) then you can only hold a lock in one of those working copies.

If one of your co-workers acquires a lock and then goes on holiday without releasing it, what do you do? Subversion
provides a means to force locks. Releasing a lock held by someone else is referred to as Breaking the lock, and
forcibly acquiring a lock which someone else already holds is referred to as Stealing the lock. Naturally these are
not things you should do lightly if you want to remain friends with your co-workers.

Locks are recorded in the repository, and a lock token is created in your local working copy. If there is a
discrepancy, for example if someone else has broken the lock, the local lock token becomes invalid. The repository
is always the definitive reference.

4.22.2. Getting a Lock

Select the file(s) in your working copy for which you want to acquire a lock, then select the command

TortoiseSVN → Get Lock....

Daily Use Guide

112

Figure 4.61. The Locking Dialog

A dialog appears, allowing you to enter a comment, so others can see why you have locked the file. The comment
is optional and currently only used with Svnserve based repositories. If (and only if) you need to steal the lock
from someone else, check the Steal lock box, then click on OK.

You can set the project property tsvn:logtemplatelock to provide a message template for users to fill in
as the lock message. Refer to Section 4.18, “Project Settings” for instructions on how to set properties.

If you select a folder and then use TortoiseSVN → Get Lock... the lock dialog will open with every file in every
sub-folder selected for locking. If you really want to lock an entire hierarchy, that is the way to do it, but you could
become very unpopular with your co-workers if you lock them out of the whole project. Use with care ...

4.22.3. Releasing a Lock

To make sure you don't forget to release a lock you don't need any more, locked files are shown in the commit
dialog and selected by default. If you continue with the commit, locks you hold on the selected files are removed,
even if the files haven't been modified. If you don't want to release a lock on certain files, you can uncheck them
(if they're not modified). If you want to keep a lock on a file you've modified, you have to enable the Keep locks
checkbox before you commit your changes.

To release a lock manually, select the file(s) in your working copy for which you want to release the lock, then

select the command TortoiseSVN → Release Lock There is nothing further to enter so TortoiseSVN will contact
the repository and release the locks. You can also use this command on a folder to release all locks recursively.

Daily Use Guide

113

4.22.4. Checking Lock Status

Figure 4.62. The Check for Modifications Dialog

To see what locks you and others hold, you can use TortoiseSVN → Check for Modifications.... Locally held
lock tokens show up immediately. To check for locks held by others (and to see if any of your locks are broken
or stolen) you need to click on Check Repository.

From the context menu here, you can also get and release locks, as well as breaking and stealing locks held by
others.

Avoid Breaking and Stealing Locks

If you break or steal someone else's lock without telling them, you could potentially cause loss of
work. If you are working with unmergeable file types and you steal someone else's lock, once you
release the lock they are free to check in their changes and overwrite yours. Subversion doesn't lose
data, but you have lost the team-working protection that locking gave you.

4.22.5. Making Non-locked Files Read-Only

As mentioned above, the most effective way to use locking is to set the svn:needs-lock property on files.
Refer to Section 4.18, “Project Settings” for instructions on how to set properties. Files with this property set will
always be checked out and updated with the read-only flag set unless your working copy holds a lock.

As a reminder, TortoiseSVN uses a special overlay to indicate this.

If you operate a policy where every file has to be locked then you may find it easier to use Subversion's auto-
props feature to set the property automatically every time you add new files. Read Section 4.18.1.5, “Automatic
property setting” for further information.

4.22.6. The Locking Hook Scripts

When you create a new repository with Subversion 1.2 or higher, four hook templates are created in the repository
hooks directory. These are called before and after getting a lock, and before and after releasing a lock.

Daily Use Guide

114

It is a good idea to install a post-lock and post-unlock hook script on the server which sends out an email
indicating the file which has been locked. With such a script in place, all your users can be notified if someone
locks/unlocks a file. You can find an example hook script hooks/post-lock.tmpl in your repository folder.

You might also use hooks to disallow breaking or stealing of locks, or perhaps limit it to a named administrator.
Or maybe you want to email the owner when one of their locks is broken or stolen.

Read Section 3.3, “Server side hook scripts” to find out more.

4.23. Creating and Applying Patches

For open source projects (like this one) everyone has read access to the repository, and anyone can make a
contribution to the project. So how are those contributions controlled? If just anyone could commit changes, the
project would be permanently unstable and probably permanently broken. In this situation the change is managed
by submitting a patch file to the development team, who do have write access. They can review the patch first,
and then either submit it to the repository or reject it back to the author.

Patch files are simply Unified-Diff files showing the differences between your working copy and the base revision.

4.23.1. Creating a Patch File

First you need to make and test your changes. Then instead of using TortoiseSVN → Commit... on the parent

folder, you select TortoiseSVN → Create Patch...

Figure 4.63. The Create Patch dialog

you can now select the files you want included in the patch, just as you would with a full commit. This will produce
a single file containing a summary of all the changes you have made to the selected files since the last update
from the repository.

The columns in this dialog can be customized in the same way as the columns in the Check for modifications
dialog. Read Section 4.7.3, “Local and Remote Status” for further details.

Daily Use Guide

115

By clicking on the Options button you can specify how the patch is created. For example you can specify that
changes in line endings or whitespaces are not included in the final patch file.

You can produce separate patches containing changes to different sets of files. Of course, if you create a patch
file, make some more changes to the same files and then create another patch, the second patch file will include
both sets of changes.

Just save the file using a filename of your choice. Patch files can have any extension you like, but by convention
they should use the .patch or .diff extension. You are now ready to submit your patch file.

Tip
Do not save the patch file with a .txt extension if you intend to send it via email to someone else.
Plain text files are often mangled with by the email software and it often happens that whitespaces
and newline chars are automatically converted and compressed. If that happens, the patch won't apply
smoothly. So use .patch or .diff as the extension when you save the patch file.

You can also save the patch to the clipboard instead of to a file. You might want to do this so that you can paste
it into an email for review by others. Or if you have two working copies on one machine and you want to transfer
changes from one to the other, a patch on the clipboard is a convenient way of doing this.

If you prefer, you can create a patch file from within the Commit or Check for Modifications dialogs. Just select
the files and use the context menu item to create a patch from those files. If you want to see the Options dialog
you have to hold shift when you right click.

4.23.2. Applying a Patch File

Patch files are applied to your working copy. This should be done from the same folder level as was used to create
the patch. If you are not sure what this is, just look at the first line of the patch file. For example, if the first file
being worked on was doc/source/english/chapter1.xml and the first line in the patch file is Index:
english/chapter1.xml then you need to apply the patch to the doc/source/ folder. However, provided
you are in the correct working copy, if you pick the wrong folder level, TortoiseSVN will notice and suggest the
correct level.

In order to apply a patch file to your working copy, you need to have at least read access to the repository. The
reason for this is that the merge program must reference the changes back to the revision against which they were
made by the remote developer.

From the context menu for that folder, click on TortoiseSVN → Apply Patch... This will bring up a file open
dialog allowing you to select the patch file to apply. By default only .patch or .diff files are shown, but you
can opt for “All files”. If you previously saved a patch to the clipboard, you can use Open from clipboard... in
the file open dialog. Note that this option only appears if you saved the patch to the clipboard using TortoiseSVN

→ Create Patch.... Copying a patch to the clipboard from another app will not make the button appear.

Alternatively, if the patch file has a .patch or .diff extension, you can right click on it directly and select

TortoiseSVN → Apply Patch.... In this case you will be prompted to enter a working copy location.

These two methods just offer different ways of doing the same thing. With the first method you select the WC and
browse to the patch file. With the second you select the patch file and browse to the WC.

Once you have selected the patch file and working copy location, TortoiseMerge runs to merge the changes from
the patch file with your working copy. A small window lists the files which have been changed. Double click on
each one in turn, review the changes and save the merged files.

The remote developer's patch has now been applied to your working copy, so you need to commit to allow everyone
else to access the changes from the repository.

4.24. Who Changed Which Line?

Daily Use Guide

116

Sometimes you need to know not only what lines have changed, but also who exactly changed specific lines in

a file. That's when the TortoiseSVN → Blame... command, sometimes also referred to as annotate command
comes in handy.

This command lists, for every line in a file, the author and the revision the line was changed.

4.24.1. Blame for Files

Figure 4.64. The Annotate / Blame Dialog

If you're not interested in changes from earlier revisions you can set the revision from which the blame should
start. Set this to 1, if you want the blame for every revision.

By default the blame file is viewed using TortoiseBlame, which highlights the different revisions to make it easier
to read. If you wish to print or edit the blame file, select Use Text viewer to view blames.

You can specify the way that line ending and whitespace changes are handled. These options are described in
Section 4.11.2, “Line-end and Whitespace Options”. The default behaviour is to treat all whitespace and line-end
differences as real changes, but if you want to ignore an indentation change and find the original author, you can
choose an appropriate option here.

You can include merge information as well if you wish, although this option can take considerably longer to
retrieve from the server. When lines are merged from another source, the blame information shows the revision
the change was made in the original source as well as the revision when it was merged into this file.

Once you press OK TortoiseSVN starts retrieving the data to create the blame file. Once the blame process has
finished the result is written into a temporary file and you can view the results.

Daily Use Guide

117

Figure 4.65. TortoiseBlame

TortoiseBlame, which is included with TortoiseSVN, makes the blame file easier to read. When you hover the
mouse over a line in the blame info column, all lines with the same revision are shown with a darker background.
Lines from other revisions which were changed by the same author are shown with a light background. The
colouring may not work as clearly if you have your display set to 256 colour mode.

If you left click on a line, all lines with the same revision are highlighted, and lines from other revisions by the same
author are highlighted in a lighter colour. This highlighting is sticky, allowing you to move the mouse without
losing the highlights. Click on that revision again to turn off highlighting.

The revision comments (log message) are shown in a hint box whenever the mouse hovers over the blame info
column. If you want to copy the log message for that revision, use the context menu which appears when you
right click on the blame info column.

You can search within the Blame report using Edit → Find.... This allows you to search for revision numbers,
authors and the content of the file itself. Log messages are not included in the search - you should use the Log
Dialog to search those.

You can also jump to a specific line number using Edit → Go To Line....

When the mouse is over the blame info columns, a context menu is available which helps with comparing revisions
and examining history, using the revision number of the line under the mouse as a reference. Context menu

→ Blame previous revision generates a blame report for the same file, but using the previous revision as the
upper limit. This gives you the blame report for the state of the file just before the line you are looking at was last

changed. Context menu → Show changes starts your diff viewer, showing you what changed in the referenced

revision. Context menu → Show log displays the revision log dialog starting with the referenced revision.

If you need a better visual indicator of where the oldest and newest changes are, select View → Color age of
lines. This will use a colour gradient to show newer lines in red and older lines in blue. The default colouring is
quite light, but you can change it using the TortoiseBlame settings.

If you are using Merge Tracking and you requested merge info when starting the blame, merged lines are shown
slightly differently. Where a line has changed as a result of merging from another path, TortoiseBlame will show

Daily Use Guide

118

the revision and author of the last change in the original file rather than the revision where the merge took place.
These lines are indicated by showing the revision and author in italics. The revision where the merge took place
is shown separately in the tooltip when you hover the mouse over the blame info columns. If you do not want
merged lines shown in this way, uncheck the Include merge info checkbox when starting the blame.

If you want to see the paths involved in the merge, select View → Merge paths. This shows the path where the
line was last changed, excluding changes resulting from a merge.

The revision shown in the blame information represents the last revision where the content of that line changed.
If the file was created by copying another file, then until you change a line, its blame revision will show the last
change in the original source file, not the revision where the copy was made. This also applies to the paths shown
with merge info. The path shows the repository location where the last change was made to that line.

The settings for TortoiseBlame can be accessed using TortoiseSVN → Settings... on the TortoiseBlame tab.
Refer to Section 4.31.9, “TortoiseBlame Settings”.

4.24.2. Blame Differences

One of the limitations of the Blame report is that it only shows the file as it was in a particular revision, and the last
person to change each line. Sometimes you want to know what change was made, as well as who made it. If you
right click on a line in TortoiseBlame you have a context menu item to show the changes made in that revision.
But if you want to see the changes and the blame information simultaneously then you need a combination of
the diff and blame reports.

The revision log dialog includes several options which allow you to do this.

Blame Revisions

In the top pane, select 2 revisions, then select Context menu → Blame revisions. This will fetch the blame
data for the 2 revisions, then use the diff viewer to compare the two blame files.

Blame Changes

Select one revision in the top pane, then pick one file in the bottom pane and select Context menu → Blame
changes. This will fetch the blame data for the selected revision and the previous revision, then use the diff
viewer to compare the two blame files.

Compare and Blame with Working BASE

Show the log for a single file, and in the top pane, select a single revision, then select Context menu →
Compare and Blame with Working BASE. This will fetch the blame data for the selected revision, and for
the file in the working BASE, then use the diff viewer to compare the two blame files.

4.25. The Repository Browser

Sometimes you need to work directly on the repository, without having a working copy. That's what the Repository
Browser is for. Just as the explorer and the icon overlays allow you to view your working copy, so the Repository
Browser allows you to view the structure and status of the repository.

Daily Use Guide

119

Figure 4.66. The Repository Browser

With the Repository Browser you can execute commands like copy, move, rename, ... directly on the repository.

The repository browser looks very similar to the Windows explorer, except that it is showing the content of the
repository at a particular revision rather than files on your computer. In the left pane you can see a directory tree,
and in the right pane are the contents of the selected directory. At the top of the Repository Browser Window you
can enter the URL of the repository and the revision you want to browse.

Folders included with the svn:externals property are also shown in the repository browser. Those folders
are shown with a small arrow on them to indicate that they are not part of the repository structure, just links.

Just like Windows explorer, you can click on the column headings in the right pane if you want to set the sort
order. And as in explorer there are context menus available in both panes.

The context menu for a file allows you to:

• Open the selected file, either with the default viewer for that file type, or with a program you choose.

• Edit the selected file. This will checkout a temporary working copy and start the default editor for that file type.
When you close the editor program, if changes were saved then a commit dialog appears, allowing you to enter
a comment and commit the change.

• Show the revision log for that file, or show a graph of all revisions so you can see where the file came from.

• Blame the file, to see who changed which line and when.

• Checkout a single file. This creates a “sparse” working copy which contains just this one file.

• Delete or rename the file.

• Save an unversioned copy of the file to your hard drive.

• Copy the URL shown in the address bar to the clipboard.

• Make a copy of the file, either to a different part of the repository, or to a working copy rooted in the same
repository.

Daily Use Guide

120

• View/Edit the file's properties.

• Create a shortcut so that you can quickly start repo browser again, opened directly at this location.

The context menu for a folder allows you to:

• Show the revision log for that folder, or show a graph of all revisions so you can see where the folder came from.

• Export the folder to a local unversioned copy on your hard drive.

• Checkout the folder to produce a local working copy on your hard drive.

• Create a new folder in the repository.

• Add unversioned files or folders directly to the repository. This is effectively the Subversion Import operation.

• Delete or rename the folder.

• Make a copy of the folder, either to a different part of the repository, or to a working copy rooted in the same
repository. This can also be used to create a branch/tag without the need to have a working copy checked out.

• View/Edit the folder's properties.

• Mark the folder for comparison. A marked folder is shown in bold.

• Compare the folder with a previously marked folder, either as a unified diff, or as a list of changed files which
can then be visually diffed using the default diff tool. This can be particularly useful for comparing two tags,
or trunk and branch to see what changed.

If you select two folders in the right pane, you can view the differences either as a unified-diff, or as a list of files
which can be visually diffed using the default diff tool.

If you select multiple folders in the right pane, you can checkout all of them at once into a common parent folder.

If you select 2 tags which are copied from the same root (typically /trunk/), you can use Context Menu →
Show Log... to view the list of revisions between the two tag points.

External items (referenced using svn:externals are also shown in the repository browser, and you can even
drill down into the folder contents. External items are marked with a red arrow over the item.

You can use F5 to refresh the view as usual. This will refresh everything which is currently displayed. If you
want to pre-fetch or refresh the information for nodes which have not been opened yet, use Ctrl-F5. After that,
expanding any node will happen instantly without a network delay while the information is fetched.

You can also use the repository browser for drag-and-drop operations. If you drag a folder from explorer into the
repo-browser, it will be imported into the repository. Note that if you drag multiple items, they will be imported
in separate commits.

If you want to move an item within the repository, just left drag it to the new location. If you want to create a
copy rather than moving the item, Ctrl-left drag instead. When copying, the cursor has a “plus” symbol on it,
just as it does in Explorer.

If you want to copy/move a file or folder to another location and also give it a new name at the same time, you
can right drag or Ctrl-right drag the item instead of using left drag. In that case, a rename dialog is shown where
you can enter a new name for the file or folder.

Whenever you make changes in the repository using one of these methods, you will be presented with a log
message entry dialog. If you dragged something by mistake, this is also your chance to cancel the action.

Sometimes when you try to open a path you will get an error message in place of the item details. This might
happen if you specified an invalid URL, or if you don't have access permission, or if there is some other server

Daily Use Guide

121

problem. If you need to copy this message to include it in an email, just right click on it and use Context Menu

→ Copy error message to clipboard, or simply use Ctrl+C.

Bookmarked urls/repositories are shown below the current repository folders in the left tree view. You can add

entries there by right clicking on any file or folder and select Context Menu → Add to Bookmarks. Clicking
on a bookmark will browse to that repository and file/folder.

4.26. Revision Graphs

Figure 4.67. A Revision Graph

Sometimes you need to know where branches and tags were taken from the trunk, and the ideal way to view this

sort of information is as a graph or tree structure. That's when you need to use TortoiseSVN → Revision Graph...

This command analyses the revision history and attempts to create a tree showing the points at which copies were
taken, and when branches/tags were deleted.

Important

In order to generate the graph, TortoiseSVN must fetch all log messages from the repository root.
Needless to say this can take several minutes even with a repository of a few thousand revisions,
depending on server speed, network bandwidth, etc. If you try this with something like the Apache
project which currently has over 500,000 revisions you could be waiting for some time.

The good news is that if you are using log caching, you only have to suffer this delay once. After
that, log data is held locally. Log caching is enabled in TortoiseSVN's settings.

4.26.1. Revision Graph Nodes

Each revision graph node represents a revision in the repository where something changed in the tree you are
looking at. Different types of node can be distinguished by shape and colour. The shapes are fixed, but colours

can be set using TortoiseSVN → Settings

Daily Use Guide

122

Added or copied items
Items which have been added, or created by copying another file/folder are shown using a rounded rectangle.
The default colour is green. Tags and trunks are treated as a special case and use a different shade, depending

on the TortoiseSVN → Settings.

Deleted items
Deleted items e.g. a branch which is no longer required, are shown using an octagon (rectangle with corners
cut off). The default colour is red.

Renamed items
Renamed items are also shown using an octagon, but the default colour is blue.

Branch tip revision
The graph is normally restricted to showing branch points, but it is often useful to be able to see the respective
HEAD revision for each branch too. If you select Show HEAD revisions, each HEAD revision nodes will
be shown as an ellipse. Note that HEAD here refers to the last revision committed on that path, not to the
HEAD revision of the repository.

Working copy revision
If you invoked the revision graph from a working copy, you can opt to show the BASE revision on the graph
using Show WC revision, which marks the BASE node with a bold outline.

Modified working copy
If you invoked the revision graph from a working copy, you can opt to show an additional node representing
your modified working copy using Show WC modifications. This is an elliptical node with a bold outline
in red by default.

Normal item
All other items are shown using a plain rectangle.

Note that by default the graph only shows the points at which items were added, copied or deleted. Showing every
revision of a project will generate a very large graph for non-trivial cases. If you really want to see all revisions
where changes were made, there is an option to do this in the View menu and on the toolbar.

The default view (grouping off) places the nodes such that their vertical position is in strict revision order, so you
have a visual cue for the order in which things were done. Where two nodes are in the same column the order
is very obvious. When two nodes are in adjacent columns the offset is much smaller because there is no need
to prevent the nodes from overlapping, and as a result the order is a little less obvious. Such optimisations are
necessary to keep complex graphs to a reasonable size. Please note that this ordering uses the edge of the node
on the older side as a reference, i.e. the bottom edge of the node when the graph is shown with oldest node at the
bottom. The reference edge is significant because the node shapes are not all the same height.

4.26.2. Changing the View

Because a revision graph is often quite complex, there are a number of features which can be used to tailor the
view the way you want it. These are available in the View menu and from the toolbar.

Group branches
The default behavior (grouping off) has all rows sorted strictly by revision. As a result, long-living branches
with sparse commits occupy a whole column for only a few changes and the graph becomes very broad.

This mode groups changes by branch, so that there is no global revision ordering: Consecutive revisions on
a branch will be shown in (often) consecutive lines. Sub-branches, however, are arranged in such a way that
later branches will be shown in the same column above earlier branches to keep the graph slim. As a result,
a given row may contain changes from different revisions.

Oldest on top
Normally the graph shows the oldest revision at the bottom, and the tree grows upwards. Use this option to
grow down from the top instead.

Daily Use Guide

123

Align trees on top
When a graph is broken into several smaller trees, the trees may appear either in natural revision order, or
aligned at the bottom of the window, depending on whether you are using the Group Branches option. Use
this option to grow all trees down from the top instead.

Reduce cross lines
This option is normally enabled and avoids showing the graph with a lot of confused crossing lines. However
this may also make the layout columns appear in less logical places, for example in a diagonal line rather than
a column, and the graph may require a larger area to draw. If this is a problem you can disable the option
from the View menu.

Differential path names
Long path names can take a lot of space and make the node boxes very large. Use this option to show
only the changed part of a path, replacing the common part with dots. E.g. if you create a branch /
branches/1.2.x/doc/html from /trunk/doc/html the branch could be shown in compact form
as /branches/1.2.x/.. because the last two levels, doc and html, did not change.

Show all revisions
This does just what you expect and shows every revision where something (in the tree that you are graphing)
has changed. For long histories this can produce a truly huge graph.

Show HEAD revisions
This ensures that the latest revision on every branch is always shown on the graph.

Exact copy sources
When a branch/tag is made, the default behaviour is to show the branch as taken from the last node where
a change was made. Strictly speaking this is inaccurate since the branches are often made from the current
HEAD rather than a specific revision. So it is possible to show the more correct (but less useful) revision that
was used to create the copy. Note that this revision may be younger than the HEAD revision of the source
branch.

Fold tags
When a project has many tags, showing every tag as a separate node on the graph takes a lot of space and
obscures the more interesting development branch structure. At the same time you may need to be able to
access the tag content easily so that you can compare revisions. This option hides the nodes for tags and shows
them instead in the tooltip for the node that they were copied from. A tag icon on the right side of the source
node indicates that tags were made. This greatly simplifies the view.

Note that if a tag is itself used as the source for a copy, perhaps a new branch based on a tag, then that tag
will be shown as a separate node rather than folded.

Hide deleted paths
Hides paths which are no longer present at the HEAD revision of the repository, e.g. deleted branches.

If you have selected the Fold tags option then a deleted branch from which tags were taken will still be
shown, otherwise the tags would disappear too. The last revision that was tagged will be shown in the colour
used for deleted nodes instead of showing a separate deletion revision.

If you select the Hide tags option then these branches will disappear again as they are not needed to show
the tags.

Hide unused branches
Hides branches where no changes were committed to the respective file or sub-folder. This does not
necessarily indicate that the branch was not used, just that no changes were made to this part of it.

Show WC revision
Marks the revision on the graph which corresponds to the update revision of the item you fetched the graph
for. If you have just updated, this will be HEAD, but if others have committed changes since your last update
your WC may be a few revisions lower down. The node is marked by giving it a bold outline.

Daily Use Guide

124

Show WC modifications
If your WC contains local changes, this option draws it as a separate elliptical node, linked back to the node
that your WC was last updated to. The default outline colour is red. You may need to refresh the graph using
F5 to capture recent changes.

Filter
Sometimes the revision graph contains more revisions than you want to see. This option opens a dialog which
allows you to restrict the range of revisions displayed, and to hide particular paths by name.

If you hide a particular path and that node has child nodes, the children will be shown as a separate tree. If
you want to hide all children as well, use the Remove the whole subtree(s) checkbox.

Tree stripes
Where the graph contains several trees, it is sometimes useful to use alternating colours on the background
to help distinguish between trees.

Show overview
Shows a small picture of the entire graph, with the current view window as a rectangle which you can drag.
This allows you to navigate the graph more easily. Note that for very large graphs the overview may become
useless due to the extreme zoom factor and will therefore not be shown in such cases.

4.26.3. Using the Graph

To make it easier to navigate a large graph, use the overview window. This shows the entire graph in a small
window, with the currently displayed portion highlighted. You can drag the highlighted area to change the
displayed region.

The revision date, author and comments are shown in a hint box whenever the mouse hovers over a revision box.

If you select two revisions (Use Ctrl-left click), you can use the context menu to show the differences between
these revisions. You can choose to show differences as at the branch creation points, but usually you will want to
show the differences at the branch end points, i.e. at the HEAD revision.

You can view the differences as a Unified-Diff file, which shows all differences in a single file with minimal

context. If you opt to Context Menu → Compare Revisions you will be presented with a list of changed files.
Double click on a file name to fetch both revisions of the file and compare them using the visual difference tool.

If you right click on a revision you can use Context Menu → Show Log to view the history.

You can also merge changes in the selected revision(s) into a different working copy. A folder selection dialog
allows you to choose the working copy to merge into, but after that there is no confirmation dialog, nor any
opportunity to try a test merge. It is a good idea to merge into an unmodified working copy so that you can revert
the changes if it doesn't work out! This is a useful feature if you want to merge selected revisions from one branch
to another.

Learn to Read the Revision Graph

First-time users may be surprised by the fact that the revision graph shows something that does not
match the user's mental model. If a revision changes multiple copies or branches of a file or folder,
for instance, then there will be multiple nodes for that single revision. It is a good practice to start
with the leftmost options in the toolbar and customize the graph step-by-step until it comes close
to your mental model.

All filter options try lose as little information as possible. That may cause some nodes to change
their color, for instance. Whenever the result is unexpected, undo the last filter operation and try
to understand what is special about that particular revision or branch. In most cases, the initially
expected outcome of the filter operation would either be inaccurate or misleading.

Daily Use Guide

125

4.26.4. Refreshing the View

If you want to check the server again for newer information, you can simply refresh the view using F5. If you are
using the log cache (enabled by default), this will check the repository for newer commits and fetch only the new
ones. If the log cache was in offline mode, this will also attempt to go back online.

If you are using the log cache and you think the message content or author may have changed, you should use the
log dialog to refresh the messages you need. Since the revision graph works from the repository root, we would
have to invalidate the entire log cache, and refilling it could take a very long time.

4.26.5. Pruning Trees

A large tree can be difficult to navigate and sometimes you will want to hide parts of it, or break it down into a
forest of smaller trees. If you hover the mouse over the point where a node link enters or leaves the node you will
see one or more popup buttons which allow you to do this.

Click on the minus button to collapse the attached sub-tree.

Click on the plus button to expand a collapsed tree. When a tree has been collapsed, this button remains visible
to indicate the hidden sub-tree.

Click on the cross button to split the attached sub-tree and show it as a separate tree on the graph.

Click on the circle button to reattach a split tree. When a tree has been split away, this button remains visible to
indicate that there is a separate sub-tree.

Click on the graph background for the main context menu, which offers options to Expand all and Join all. If no
branch has been collapsed or split, the context menu will not be shown.

4.27. Exporting a Subversion Working Copy

Sometimes you may want a clean copy of your working tree without the .svn directory, e.g. to create a zipped
tarball of your source, or to export to a web server. Instead of making a copy and then deleting the .svn directory

manually, TortoiseSVN offers the command TortoiseSVN → Export.... Exporting from a URL and exporting
from a working copy are treated slightly differently.

Daily Use Guide

126

Figure 4.68. The Export-from-URL Dialog

If you execute this command on an unversioned folder, TortoiseSVN will assume that the selected folder is the
target, and open a dialog for you to enter the URL and revision to export from. This dialog has options to export
only the top level folder, to omit external references, and to override the line end style for files which have the
svn:eol-style property set.

Of course you can export directly from the repository too. Use the Repository Browser to navigate to the relevant

subtree in your repository, then use Context Menu → Export. You will get the Export from URL dialog described
above.

If you execute this command on your working copy you'll be asked for a place to save the clean working
copy without the .svn folder. By default, only the versioned files are exported, but you can use the Export
unversioned files too checkbox to include any other unversioned files which exist in your WC and not in the
repository. External references using svn:externals can be omitted if required.

Another way to export from a working copy is to right drag the working copy folder to another location and choose

Context Menu → SVN Export versioned items here or Context Menu → SVN Export all items here or

Context Menu → SVN Export changed items here. The second option includes the unversioned files as well.
The third option exports only modified items, but maintains the folder structure.

When exporting from a working copy, if the target folder already contains a folder of the same name as the one
you are exporting, you will be given the option to overwrite the existing content, or to create a new folder with
an automatically generated name, e.g. Target (1).

Exporting single files

The export dialog does not allow exporting single files, even though Subversion can.

To export single files with TortoiseSVN, you have to use the repository browser (Section 4.25, “The
Repository Browser”). Simply drag the file(s) you want to export from the repository browser to
where you want them in the explorer, or use the context menu in the repository browser to export
the files.

Daily Use Guide

127

Exporting a Change Tree

If you want to export a copy of your project tree structure but containing only the files which have
changed in a particular revision, or between any two revisions, use the compare revisions feature
described in Section 4.11.3, “Comparing Folders”.

If you want to export your working copy tree structure but containing only the files which are locally
modified, refer to SVN Export changed items here above.

4.27.1. Removing a working copy from version control

Sometimes you have a working copy which you want to convert back to a normal folder without the .svn
directory. All you need to do is delete the .svn directory from the working copy root.

Alternatively you can export the folder to itself. In Windows Explorer right drag the working copy root folder
from the file pane onto itself in the folder pane. TortoiseSVN detects this special case and asks if you want to
make the working copy unversioned. If you answer yes the control directory will be removed and you will have
a plain, unversioned directory tree.

4.28. Relocating a working copy

Figure 4.69. The Relocate Dialog

If your repository has for some reason changed it's location (IP/URL). Maybe you're even stuck and can't commit
and you don't want to checkout your working copy again from the new location and to move all your changed

data back into the new working copy, TortoiseSVN → Relocate is the command you are looking for. It basically
does very little: it rewrites all URLs that are associated with each file and folder with the new URL.

Note

This operation only works on working copy roots. So the context menu entry is only shown for
working copy roots.

You may be surprised to find that TortoiseSVN contacts the repository as part of this operation. All it is doing
is performing some simple checks to make sure that the new URL really does refer to the same repository as the
existing working copy.

Warning

This is a very infrequently used operation. The relocate command is only used if the URL of the
repository root has changed. Possible reasons are:

Daily Use Guide

128

• The IP address of the server has changed.

• The protocol has changed (e.g. http:// to https://).

• The repository root path in the server setup has changed.

Put another way, you need to relocate when your working copy is referring to the same location in
the same repository, but the repository itself has moved.

It does not apply if:

• You want to move to a different Subversion repository. In that case you should perform a clean
checkout from the new repository location.

• You want to switch to a different branch or directory within the same repository. To do that you

should use TortoiseSVN → Switch.... Read Section 4.20.3, “To Checkout or to Switch...” for
more information.

If you use relocate in either of the cases above, it will corrupt your working copy and you will get
many unexplainable error messages while updating, committing, etc. Once that has happened, the
only fix is a fresh checkout.

4.29. Integration with Bug Tracking Systems / Issue Trackers

It is very common in Software Development for changes to be related to a specific bug or issue ID. Users of bug
tracking systems (issue trackers) would like to associate the changes they make in Subversion with a specific ID in
their issue tracker. Most issue trackers therefore provide a pre-commit hook script which parses the log message
to find the bug ID with which the commit is associated. This is somewhat error prone since it relies on the user to
write the log message properly so that the pre-commit hook script can parse it correctly.

TortoiseSVN can help the user in two ways:

1. When the user enters a log message, a well defined line including the issue number associated with the commit
can be added automatically. This reduces the risk that the user enters the issue number in a way the bug tracking
tools can't parse correctly.

Or TortoiseSVN can highlight the part of the entered log message which is recognized by the issue tracker.
That way the user knows that the log message can be parsed correctly.

2. When the user browses the log messages, TortoiseSVN creates a link out of each bug ID in the log message
which fires up the browser to the issue mentioned.

4.29.1. Adding Issue Numbers to Log Messages

You can integrate a bug tracking tool of your choice in TortoiseSVN. To do this, you have to define some
properties, which start with bugtraq:. They must be set on Folders: (Section 4.18, “Project Settings”)

Daily Use Guide

129

Figure 4.70. The Bugtraq Properties Dialog

When you edit any of the bugtraq properties a special property editor is used to make it easier to set appropriate
values.

There are two ways to integrate TortoiseSVN with issue trackers. One is based on simple strings, the other is based
on regular expressions. The properties used by both approaches are:

bugtraq:url
Set this property to the URL of your bug tracking tool. It must be properly URI encoded and it has to contain
%BUGID%. %BUGID% is replaced with the Issue number you entered. This allows TortoiseSVN to display
a link in the log dialog, so when you are looking at the revision log you can jump directly to your bug
tracking tool. You do not have to provide this property, but then TortoiseSVN shows only the issue number
and not the link to it. e.g the TortoiseSVN project is using http://issues.tortoisesvn.net/?
do=details&id=%BUGID%.

You can also use relative URLs instead of absolute ones. This is useful when your issue tracker is on the same
domain/server as your source repository. In case the domain name ever changes, you don't have to adjust the
bugtraq:url property. There are two ways to specify a relative URL:

Daily Use Guide

130

If it begins with the string ^/ it is assumed to be relative to the repository root. For example, ^/../?
do=details&id=%BUGID% will resolve to http://tortoisesvn.net/?do=details&id=
%BUGID% if your repository is located on http://tortoisesvn.net/svn/trunk/.

A URL beginning with the string / is assumed to be relative to the server's hostname. For example
/?do=details&id=%BUGID% will resolve to http://tortoisesvn.net/?do=details&id=
%BUGID% if your repository is located anywhere on http://tortoisesvn.net.

bugtraq:warnifnoissue
Set this to true, if you want TortoiseSVN to warn you because of an empty issue-number text field. Valid
values are true/false. If not defined, false is assumed.

4.29.1.1. Issue Number in Text Box

In the simple approach, TortoiseSVN shows the user a separate input field where a bug ID can be entered. Then
a separate line is appended/prepended to the log message the user entered.

bugtraq:message
This property activates the bug tracking system in Input field mode. If this property is set, then TortoiseSVN
will prompt you to enter an issue number when you commit your changes. It's used to add a line at the end of
the log message. It must contain %BUGID%, which is replaced with the issue number on commit. This ensures
that your commit log contains a reference to the issue number which is always in a consistent format and can
be parsed by your bug tracking tool to associate the issue number with a particular commit. As an example
you might use Issue : %BUGID%, but this depends on your Tool.

bugtraq:label
This text is shown by TortoiseSVN on the commit dialog to label the edit box where you enter the issue
number. If it's not set, Bug-ID / Issue-Nr: will be displayed. Keep in mind though that the window
will not be resized to fit this label, so keep the size of the label below 20-25 characters.

bugtraq:number
If set to true only numbers are allowed in the issue-number text field. An exception is the comma, so you
can comma separate several numbers. Valid values are true/false. If not defined, true is assumed.

bugtraq:append
This property defines if the bug-ID is appended (true) to the end of the log message or inserted (false) at the
start of the log message. Valid values are true/false. If not defined, true is assumed, so that existing
projects don't break.

4.29.1.2. Issue Numbers Using Regular Expressions

In the approach with regular expressions, TortoiseSVN doesn't show a separate input field but marks the part of
the log message the user enters which is recognized by the issue tracker. This is done while the user writes the
log message. This also means that the bug ID can be anywhere inside a log message! This method is much more
flexible, and is the one used by the TortoiseSVN project itself.

bugtraq:logregex
This property activates the bug tracking system in Regex mode. It contains either a single regular expressions,
or two regular expressions separated by a newline.

If two expressions are set, then the first expression is used as a pre-filter to find expressions which contain
bug IDs. The second expression then extracts the bare bug IDs from the result of the first regex. This allows
you to use a list of bug IDs and natural language expressions if you wish. e.g. you might fix several bugs and
include a string something like this: “This change resolves issues #23, #24 and #25”.

If you want to catch bug IDs as used in the expression above inside a log message, you could use the following
regex strings, which are the ones used by the TortoiseSVN project: [Ii]ssues?:?(\s*(,|and)?\s*#
\d+)+ and (\d+).

The first expression picks out “issues #23, #24 and #25” from the surrounding log message. The second regex
extracts plain decimal numbers from the output of the first regex, so it will return “23”, “24” and “25” to
use as bug IDs.

Daily Use Guide

131

Breaking the first regex down a little, it must start with the word “issue”, possibly capitalised. This is optionally
followed by an “s” (more than one issue) and optionally a colon. This is followed by one or more groups each
having zero or more leading whitespace, an optional comma or “and” and more optional space. Finally there
is a mandatory “#” and a mandatory decimal number.

If only one expression is set, then the bare bug IDs must be matched in the groups of the regex string. Example:
[Ii]ssue(?:s)? #?(\d+) This method is required by a few issue trackers, e.g. trac, but it is harder
to construct the regex. We recommend that you only use this method if your issue tracker documentation
tells you to.

If you are unfamiliar with regular expressions, take a look at the introduction at https://en.wikipedia.org/wiki/
Regular_expression [https://en.wikipedia.org/wiki/Regular_expression], and the online documentation and
tutorial at http://www.regular-expressions.info/ [http://www.regular-expressions.info/].

It's not always easy to get the regex right so to help out there is a test dialog built into the bugtraq properties
dialog. Click on the button to the right of the edit boxes to bring it up. Here you can enter some test text, and
change each regex to see the results. If the regex is invalid the edit box background changes to red.

If both the bugtraq:message and bugtraq:logregex properties are set, logregex takes precedence.

Tip

Even if you don't have an issue tracker with a pre-commit hook parsing your log messages, you still
can use this to turn the issues mentioned in your log messages into links!

And even if you don't need the links, the issue numbers show up as a separate column in the log
dialog, making it easier to find the changes which relate to a particular issue.

Some tsvn: properties require a true/false value. TortoiseSVN also understands yes as a synonym for
true and no as a synonym for false.

Set the Properties on Folders

These properties must be set on folders for the system to work. When you commit a file or folder the
properties are read from that folder. If the properties are not found there, TortoiseSVN will search
upwards through the folder tree to find them until it comes to an unversioned folder, or the tree root
(e.g. C:\) is found. If you can be sure that each user checks out only from e.g trunk/ and not some
sub-folder, then it's enough if you set the properties on trunk/. If you can't be sure, you should
set the properties recursively on each sub-folder. A property setting deeper in the project hierarchy
overrides settings on higher levels (closer to trunk/).

As of version 1.8, TortoiseSVN and Subversion use so called inherited properties, which
means a property that is set on a folder is automatically also implicitly set on all subfolders. So there's
no need to set the properties on all folders anymore but only on the root folder.

For project properties only, i.e. tsvn:, bugtraq: and webviewer: you can use the Recursive
checkbox to set the property to all sub-folders in the hierarchy, without also setting it on all files.

When you add new sub-folders to a working copy using TortoiseSVN, any project properties present in the parent
folder will automatically be added to the new child folder too.

No Issue Tracker Information from Repository Browser

Because the issue tracker integration depends upon accessing Subversion properties, you will only
see the results when using a checked out working copy. Fetching properties remotely is a slow
operation, so you will not see this feature in action from the repo browser unless you started the

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/
http://www.regular-expressions.info/

Daily Use Guide

132

repo browser from your working copy. If you started the repo browser by entering the URL of the
repository you won't see this feature.

For the same reason, project properties will not be propagated automatically when a child folder is
added using the repo browser.

This issue tracker integration is not restricted to TortoiseSVN; it can be used with any Subversion client. For
more information, read the full Issue Tracker Integration Specification [https://svn.code.sf.net/p/tortoisesvn/
code/trunk/doc/notes/issuetrackers.txt] in the TortoiseSVN source repository. (Section 3, “License” explains how
to access the repository.)

4.29.2. Getting Information from the Issue Tracker

The previous section deals with adding issue information to the log messages. But what if you need to get
information from the issue tracker? The commit dialog has a COM interface which allows integration an external
program that can talk to your tracker. Typically you might want to query the tracker to get a list of open issues
assigned to you, so that you can pick the issues that are being addressed in this commit.

Any such interface is of course highly specific to your issue tracker system, so we cannot provide this part,
and describing how to create such a program is beyond the scope of this manual. The interface definition
and sample plugins in C# and C++/ATL can be obtained from the contrib folder in the TortoiseSVN
repository [https://svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/issue-tracker-plugins]. (Section 3, “License”
explains how to access the repository.) A summary of the API is also given in Chapter 7, IBugtraqProvider
interface. Another (working) example plugin in C# is Gurtle [http://code.google.com/p/gurtle/] which implements
the required COM interface to interact with the Google Code [http://code.google.com/hosting/] issue tracker.

For illustration purposes, let's suppose that your system administrator has provided you with an issue tracker plugin
which you have installed, and that you have set up some of your working copies to use the plugin in TortoiseSVN's
settings dialog. When you open the commit dialog from a working copy to which the plugin has been assigned,
you will see a new button at the top of the dialog.

https://svn.code.sf.net/p/tortoisesvn/code/trunk/doc/notes/issuetrackers.txt
https://svn.code.sf.net/p/tortoisesvn/code/trunk/doc/notes/issuetrackers.txt
https://svn.code.sf.net/p/tortoisesvn/code/trunk/doc/notes/issuetrackers.txt
https://svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/issue-tracker-plugins
https://svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/issue-tracker-plugins
https://svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/issue-tracker-plugins
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/hosting/
http://code.google.com/hosting/

Daily Use Guide

133

Figure 4.71. Example issue tracker query dialog

In this example you can select one or more open issues. The plugin can then generate specially formatted text
which it adds to your log message.

4.30. Integration with Web-based Repository Viewers

There are several web-based repository viewers available for use with Subversion such as ViewVC [http://
www.viewvc.org/] and WebSVN [http://websvn.tigris.org/]. TortoiseSVN provides a means to link with these
viewers.

You can integrate a repo viewer of your choice in TortoiseSVN. To do this, you have to define some properties
which define the linkage. They must be set on Folders: (Section 4.18, “Project Settings”)

webviewer:revision
Set this property to the URL of your repo viewer to view all changes in a specific revision. It must be properly
URI encoded and it has to contain %REVISION%. %REVISION% is replaced with the revision number in

question. This allows TortoiseSVN to display a context menu entry in the log dialog Context Menu → View
revision in webviewer.

webviewer:pathrevision
Set this property to the URL of your repo viewer to view changes to a specific file in a specific revision. It
must be properly URI encoded and it has to contain %REVISION% and %PATH%. %PATH% is replaced with
the path relative to the repository root. This allows TortoiseSVN to display a context menu entry in the log

http://www.viewvc.org/
http://www.viewvc.org/
http://www.viewvc.org/
http://websvn.tigris.org/
http://websvn.tigris.org/

Daily Use Guide

134

dialog Context Menu → View revision for path in webviewer For example, if you right click in the log
dialog bottom pane on a file entry /trunk/src/file then the %PATH% in the URL will be replaced with
/trunk/src/file.

You can also use relative URLs instead of absolute ones. This is useful in case your web viewer is on the
same domain/server as your source repository. In case the domain name ever changes, you don't have to adjust
the webviewer:revision and webviewer:pathrevision property. The format is the same as for the
bugtraq:url property. See Section 4.29, “Integration with Bug Tracking Systems / Issue Trackers”.

Set the Properties on Folders

These properties must be set on folders for the system to work. When you commit a file or folder the
properties are read from that folder. If the properties are not found there, TortoiseSVN will search
upwards through the folder tree to find them until it comes to an unversioned folder, or the tree root
(e.g. C:\) is found. If you can be sure that each user checks out only from e.g trunk/ and not some
sub-folder, then it's enough if you set the properties on trunk/. If you can't be sure, you should
set the properties recursively on each sub-folder. A property setting deeper in the project hierarchy
overrides settings on higher levels (closer to trunk/).

For project properties only, i.e. tsvn:, bugtraq: and webviewer: you can use the Recursive
checkbox to set the property to all sub-folders in the hierarchy, without also setting it on all files.

When you add new sub-folders to a working copy using TortoiseSVN, any project properties present in the parent
folder will automatically be added to the new child folder too.

Limitations Using the Repository Browser

Because the repo viewer integration depends upon accessing Subversion properties, you will only see
the results when using a checked out working copy. Fetching properties remotely is a slow operation,
so you will not see this feature in action from the repo browser unless you started the repo browser
from your working copy. If you started the repo browser by entering the URL of the repository you
won't see this feature.

For the same reason, project properties will not be propagated automatically when a child folder is
added using the repo browser.

4.31. TortoiseSVN's Settings

To find out what the different settings are for, just leave your mouse pointer a second on the editbox/checkbox...
and a helpful tooltip will popup.

4.31.1. General Settings

Daily Use Guide

135

Figure 4.72. The Settings Dialog, General Page

This dialog allows you to specify your preferred language, and the Subversion-specific settings.

Language
Selects your user interface language. Of course, you have to install the corresponding language pack first to
get another UI language than the default English one.

Check for updates
TortoiseSVN will contact its download site periodically to see if there is a newer version of the program
available. If there is it will show a notification link in the commit dialog. Use Check now if you want an
answer right away. The new version will not be downloaded; you simply receive an information dialog telling
you that the new version is available.

System sounds
TortoiseSVN has three custom sounds which are installed by default.

• Error

• Notice

• Warning
You can select different sounds (or turn these sounds off completely) using the Windows Control Panel.
Configure is a shortcut to the Control Panel.

Use Aero Dialogs
On Windows Vista and later systems this controls whether dialogs use the Aero styling.

Create Library
On Windows 7 you can create a Library in which to group working copies which are scattered in various
places on your system.

Global ignore pattern

Daily Use Guide

136

Global ignore patterns are used to prevent unversioned files from showing up e.g. in the commit dialog. Files
matching the patterns are also ignored by an import. Ignore files or directories by typing in the names or
extensions. Patterns are separated by spaces e.g. bin obj *.bak *.~?? *.jar *.[Tt]mp. These
patterns should not include any path separators. Note also that there is no way to differentiate between files
and directories. Read Section 4.14.1, “Pattern Matching in Ignore Lists” for more information on the pattern-
matching syntax.

Note that the ignore patterns you specify here will also affect other Subversion clients running on your PC,
including the command line client.

Caution

If you use the Subversion configuration file to set a global-ignores pattern, it will override
the settings you make here. The Subversion configuration file is accessed using the Edit as
described below.

This ignore pattern will affect all your projects. It is not versioned, so it will not affect other users. By contrast
you can also use the versioned svn:ignore or svn:global-ignores property to exclude files or
directories from version control. Read Section 4.14, “Ignoring Files And Directories” for more information.

Set file dates to the “last commit time”
This option tells TortoiseSVN to set the file dates to the last commit time when doing a checkout or an update.
Otherwise TortoiseSVN will use the current date. If you are developing software it is generally best to use the
current date because build systems normally look at the date stamps to decide which files need compiling. If
you use “last commit time” and revert to an older file revision, your project may not compile as you expect it to.

Subversion configuration file
Use Edit to edit the Subversion configuration file directly. Some settings cannot be modified
directly by TortoiseSVN, and need to be set here instead. For more information about the
Subversion config file see the Runtime Configuration Area [http://svnbook.red-bean.com/en/1.8/
svn.advanced.confarea.html]. The section on Automatic Property Setting [http://svnbook.red-bean.com/
en/1.8/svn.advanced.props.html#svn.advanced.props.auto] is of particular interest, and that is configured
here. Note that Subversion can read configuration information from several places, and you need to know
which one takes priority. Refer to Configuration and the Windows Registry [http://svnbook.red-bean.com/
en/1.8/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry] to find out more.

Apply local modifications to svn:externals when updating
This option tells TortoiseSVN to always apply local modifications to the svn:externals property when
updating the working copy.

http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.8/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry
http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry
http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry

Daily Use Guide

137

4.31.1.1. Context Menu Settings

Figure 4.73. The Settings Dialog, Context Menu Page

This page allows you to specify which of the TortoiseSVN context menu entries will show up in the main context
menu, and which will appear in the TortoiseSVN submenu. By default most items are unchecked and appear in
the submenu.

There is a special case for Get Lock. You can of course promote it to the top level using the list above, but as
most files don't need locking this just adds clutter. However, a file with the svn:needs-lock property needs
this action every time it is edited, so in that case it is very useful to have at the top level. Checking the box here
means that when a file is selected which has the svn:needs-lock property set, Get Lock will always appear
at the top level.

Most of the time, you won't need the TortoiseSVN context menu, apart for folders that are under version control by
Subversion. For non- versioned folders, you only really need the context menu when you want to do a checkout.
If you check the option Hide menus for unversioned paths , TortoiseSVN will not add its entries to
the context menu for unversioned folders. But the entries are added for all items and paths in a versioned folder.
And you can get the entries back for unversioned folders by holding the Shift key down while showing the context
menu.

If there are some paths on your computer where you just don't want TortoiseSVN's context menu to appear at all,
you can list them in the box at the bottom.

Daily Use Guide

138

4.31.1.2. TortoiseSVN Dialog Settings 1

Figure 4.74. The Settings Dialog, Dialogs 1 Page

This dialog allows you to configure some of TortoiseSVN's dialogs the way you like them.

Default number of log messages

Limits the number of log messages that TortoiseSVN fetches when you first select TortoiseSVN → Show
Log Useful for slow server connections. You can always use Show All or Next 100 to get more messages.

Font for log messages
Selects the font face and size used to display the log message itself in the middle pane of the Revision Log
dialog, and when composing log messages in the Commit dialog.

Short date / time format in log messages
If the standard long messages use up too much space on your screen use the short format.

Can double click in log list to compare with previous revision
If you frequently find yourself comparing revisions in the top pane of the log dialog, you can use this option to
allow that action on double click. It is not enabled by default because fetching the diff is often a long process,
and many people prefer to avoid the wait after an accidental double click, which is why this option is not
enabled by default.

Auto-close
TortoiseSVN can automatically close all progress dialogs when the action is finished without error. This
setting allows you to select the conditions for closing the dialogs. The default (recommended) setting is Close
manually which allows you to review all messages and check what has happened. However, you may decide
that you want to ignore some types of message and have the dialog close automatically if there are no critical
changes.

Auto-close if no merges, adds or deletes means that the progress dialog will close if there were simple
updates, but if changes from the repository were merged with yours, or if any files were added or deleted, the
dialog will remain open. It will also stay open if there were any conflicts or errors during the operation.

Daily Use Guide

139

Auto-close if no conflicts relaxes the criteria further and will close the dialog even if there were merges,
adds or deletes. However, if there were any conflicts or errors, the dialog remains open.

Auto-close if no errors always closes the dialog even if there were conflicts. The only condition that keeps the
dialog open is an error condition, which occurs when Subversion is unable to complete the task. For example,
an update fails because the server is inaccessible, or a commit fails because the working copy is out-of-date.

Always close dialogs for local operations
Local operations like adding files or reverting changes do not need to contact the repository and complete
quickly, so the progress dialog is often of little interest. Select this option if you want the progress dialog to
close automatically after these operations, unless there are errors.

Use recycle bin when reverting
When you revert local modifications, your changes are discarded. TortoiseSVN gives you an extra safety net
by sending the modified file to the recycle bin before bringing back the pristine copy. If you prefer to skip
the recycle bin, uncheck this option.

Use URL of WC as the default “From:” URL
In the merge dialog, the default behaviour is for the From: URL to be remembered between merges. However,
some people like to perform merges from many different points in their hierarchy, and find it easier to start out
with the URL of the current working copy. This can then be edited to refer to a parallel path on another branch.

Default checkout path
You can specify the default path for checkouts. If you keep all your checkouts in one place, it is useful to have
the drive and folder pre-filled so you only have to add the new folder name to the end.

Default checkout URL
You can also specify the default URL for checkouts. If you often checkout sub-projects of some very large
project, it can be useful to have the URL pre-filled so you only have to add the sub-project name to the end.

4.31.1.3. TortoiseSVN Dialog Settings 2

Figure 4.75. The Settings Dialog, Dialogs 2 Page

Daily Use Guide

140

Recurse into unversioned folders
If this box is checked (default state), then whenever the status of an unversioned folder is shown in the Add,
Commit or Check for Modifications dialog, every child file and folder is also shown. If you uncheck this
box, only the unversioned parent is shown. Unchecking reduces clutter in these dialogs. In that case if you
select an unversioned folder for Add, it is added recursively.

In the Check for Modifications dialog you can opt to see ignored items. If this box is checked then whenever
an ignored folder is found, all child items will be shown as well.

Use auto-completion of file paths and keywords
The commit dialog includes a facility to parse the list of filenames being committed. When you type the first
3 letters of an item in the list, the auto-completion box pops up, and you can press Enter to complete the
filename. Check the box to enable this feature.

Timeout in seconds to stop the auto-completion parsing
The auto-completion parser can be quite slow if there are a lot of large files to check. This timeout stops the
commit dialog being held up for too long. If you are missing important auto-completion information, you
can extend the timeout.

Only use spellchecker when tsvn:projectlanguage is set
If you don't wish to use the spellchecker for all commits, check this box. The spellchecker will still be enabled
where the project properties require it.

Max. items to keep in the log message history
When you type in a log message in the commit dialog, TortoiseSVN stores it for possible re-use later. By
default it will keep the last 25 log messages for each repository, but you can customize that number here. If
you have many different repositories, you may wish to reduce this to avoid filling your registry.

Note that this setting applies only to messages that you type in on this computer. It has nothing to do with
the log cache.

Select items automatically
The normal behaviour in the commit dialog is for all modified (versioned) items to be selected for commit
automatically. If you prefer to start with nothing selected and pick the items for commit manually, uncheck
this box.

Reopen dialog after commit if items were left uncommitted
This reopens the commit dialog automatically at the same directory after a successful commit. The dialog is
reopened only if there still are items left to commit.

Contact the repository on startup
The Check for Modifications dialog checks the working copy by default, and only contacts the repository
when you click Check repository. If you always want to check the repository, you can use this setting to
make that action happen automatically.

Show Lock dialog before locking files

When you select one or more files and then use TortoiseSVN → Lock to take out a lock on those files, on
some projects it is customary to write a lock message explaining why you have locked the files. If you do not
use lock messages, you can uncheck this box to skip that dialog and lock the files immediately.

If you use the lock command on a folder, you are always presented with the lock dialog as that also gives
you the option to select files for locking.

If your project is using the tsvn:lockmsgminsize property, you will see the lock dialog regardless of
this setting because the project requires lock messages.

Daily Use Guide

141

4.31.1.4. TortoiseSVN Dialog Settings 3

Figure 4.76. The Settings Dialog, Dialogs 3 Page

Pre-fetch folders for faster browsing
If this box is checked (default state), then the repository browser fetches information about shown folders in
the background. That way as soon as you browse into one of those folders, the information is already available.

Some servers however can't handle the multiple requests this causes or when not configured correctly treat so
many requests as something bad and start blocking them. In this case you can disable the pre-fetching here.

Show externals
If this box is checked (default state), then the repository browser shows files and folders that are included
with the svn:externals property as normal files and folders, but with an overlay icon to mark them as
from an external source.

As with the pre-fetch feature explained above, this too can put too much stress on weak servers. In this case
you can disable this feature here.

Daily Use Guide

142

4.31.1.5. TortoiseSVN Colour Settings

Figure 4.77. The Settings Dialog, Colours Page

This dialog allows you to configure the text colours used in TortoiseSVN's dialogs the way you like them.

Possible or real conflict / obstructed
A conflict has occurred during update, or may occur during merge. Update is obstructed by an existing
unversioned file/folder of the same name as a versioned one.

This colour is also used for error messages in the progress dialogs.

Added files
Items added to the repository.

Missing / deleted / replaced
Items deleted from the repository, missing from the working copy, or deleted from the working copy and
replaced with another file of the same name.

Merged
Changes from the repository successfully merged into the WC without creating any conflicts.

Modified / copied
Add with history, or paths copied in the repository. Also used in the log dialog for entries which include
copied items.

Deleted node
An item which has been deleted from the repository.

Added node
An item which has been added to the repository, by an add, copy or move operation.

Daily Use Guide

143

Renamed node
An item which has been renamed within the repository.

Replaced node
The original item has been deleted and a new item with the same name replaces it.

Filter match
When using filtering in the log dialog, search terms are highlighted in the results using this colour.

4.31.2. Revision Graph Settings

Figure 4.78. The Settings Dialog, Revision Graph Page

Classification Patterns
The revision graph attempts to show a clearer picture of your repository structure by distinguishing between
trunk, branches and tags. As there is no such classification built into Subversion, this information is extracted
from the path names. The default settings assume that you use the conventional English names as suggested
in the Subversion documentation, but of course your usage may vary.

Specify the patterns used to recognise these paths in the three boxes provided. The patterns will be matched
case-insensitively, but you must specify them in lower case. Wild cards * and ? will work as usual, and you
can use ; to separate multiple patterns. Do not include any extra white space as it will be included in the
matching specification.

Commit tag detection

Please note that these patterns are also used to detect commits to a tag, not just for the revision
graph.

Modify Colors
Colors are used in the revision graph to indicate the node type, i.e. whether a node is added, deleted, renamed.
In order to help pick out node classifications, you can allow the revision graph to blend colors to give an

Daily Use Guide

144

indication of both node type and classification. If the box is checked, blending is used. If the box is unchecked,
color is used to indicate node type only. Use the color selection dialog to allocate the specific colors used.

4.31.2.1. Revision Graph Colors

Figure 4.79. The Settings Dialog, Revision Graph Colors Page

This page allows you to configure the colors used. Note that the color specified here is the solid color. Most nodes
are colored using a blend of the node type color, the background color and optionally the classification color.

Deleted Node
Items which have been deleted and not copied anywhere else in the same revision.

Added Node
Items newly added, or copied (add with history).

Renamed Node
Items deleted from one location and added in another in the same revision.

Modified Node
Simple modifications without any add or delete.

Unchanged Node
May be used to show the revision used as the source of a copy, even when no change (to the item being
graphed) took place in that revision.

HEAD node
Current HEAD revision in the repository.

WC Node
If you opt to show an extra node for your modified working copy, attached to its last-commit revision on the
graph, use this color.

Daily Use Guide

145

WC Node Border
If you opt to show whether the working copy is modified, use this color border on the WC node when
modifications are found.

Tag Nodes
Nodes classified as tags may be blended with this color.

Trunk Nodes
Nodes classified as trunk may be blended with this color.

Folded Tag Markers
If you use tag folding to save space, tags are marked on the copy source using a block in this color.

Selected Node Markers
When you left click on a node to select it, the marker used to indicate selection is a block in this color.

Stripes
These colors are used when the graph is split into sub-trees and the background is colored in alternating stripes
to help pick out the separate trees.

4.31.3. Icon Overlay Settings

Figure 4.80. The Settings Dialog, Icon Overlays Page

This page allows you to choose the items for which TortoiseSVN will display icon overlays.

Since it takes quite a while to fetch the status of a working copy, TortoiseSVN uses a cache to store the status
so the explorer doesn't get hogged too much when showing the overlays. You can choose which type of cache
TortoiseSVN should use according to your system and working copy size here:

Default
Caches all status information in a separate process (TSVNCache.exe). That process watches all drives for
changes and fetches the status again if files inside a working copy get modified. The process runs with the least

Daily Use Guide

146

possible priority so other programs don't get hogged because of it. That also means that the status information
is not real time but it can take a few seconds for the overlays to change.

Advantage: the overlays show the status recursively, i.e. if a file deep inside a working copy is modified,
all folders up to the working copy root will also show the modified overlay. And since the process can send
notifications to the shell, the overlays on the left tree view usually change too.

Disadvantage: the process runs constantly, even if you're not working on your projects. It also uses around
10-50 MB of RAM depending on number and size of your working copies.

Shell
Caching is done directly inside the shell extension dll, but only for the currently visible folder. Each time you
navigate to another folder, the status information is fetched again.

Advantage: needs only very little memory (around 1 MB of RAM) and can show the status in real time.

Disadvantage: Since only one folder is cached, the overlays don't show the status recursively. For big working
copies, it can take more time to show a folder in explorer than with the default cache. Also the mime-type
column is not available.

None
With this setting, the TortoiseSVN does not fetch the status at all in Explorer. Because of that, files don't get
an overlay and folders only get a 'normal' overlay if they're versioned. No other overlays are shown, and no
extra columns are available either.

Advantage: uses absolutely no additional memory and does not slow down the Explorer at all while browsing.

Disadvantage: Status information of files and folders is not shown in Explorer. To see if your working copies
are modified, you have to use the “Check for modifications” dialog.

By default, overlay icons and context menus will appear in all open/save dialogs as well as in Windows Explorer.
If you want them to appear only in Windows Explorer, check the Show overlays and context menu only in
explorer box.

You can force the status cache to None for elevated processes by checking the Disable status cache for elevated
processes box. This is useful if you want to prevent another TSVNCache.exe process getting created with
elevated privileges.

You can also choose to mark folders as modified if they contain unversioned items. This could be useful for
reminding you that you have created new files which are not yet versioned. This option is only available when
you use the default status cache option (see below).

If you have files in the ignore-on-commit changelist, you can chose to make those files not propagate their
status to the parent folder. That way if only files in that changelist are modified, the parent folder still shows the
unmodified overlay icon.

The next group allows you to select which classes of storage should show overlays. By default, only hard drives
are selected. You can even disable all icon overlays, but where's the fun in that?

Network drives can be very slow, so by default icons are not shown for working copies located on network shares.

USB Flash drives appear to be a special case in that the drive type is identified by the device itself. Some appear
as fixed drives, and some as removable drives.

The Exclude Paths are used to tell TortoiseSVN those paths for which it should not show icon overlays and
status columns. This is useful if you have some very big working copies containing only libraries which you won't
change at all and therefore don't need the overlays, or if you only want TortoiseSVN to look in specific folders.

Any path you specify here is assumed to apply recursively, so none of the child folders will show overlays either.
If you want to exclude only the named folder, append ? after the path.

Daily Use Guide

147

The same applies to the Include Paths. Except that for those paths the overlays are shown even if the overlays
are disabled for that specific drive type, or by an exclude path specified above.

Users sometimes ask how these three settings interact. For any given path check the include and exclude lists,
seeking upwards through the directory structure until a match is found. When the first match is found, obey that
include or exclude rule. If there is a conflict, a single directory spec takes precedence over a recursive spec, then
inclusion takes precedence over exclusion.

An example will help here:

Exclude:
C:
C:\develop\?
C:\develop\tsvn\obj
C:\develop\tsvn\bin

Include:
C:\develop

These settings disable icon overlays for the C: drive, except for c:\develop. All projects below that directory
will show overlays, except the c:\develop folder itself, which is specifically ignored. The high-churn binary
folders are also excluded.

TSVNCache.exe also uses these paths to restrict its scanning. If you want it to look only in particular folders,
disable all drive types and include only the folders you specifically want to be scanned.

Exclude SUBST Drives

It is often convenient to use a SUBST drive to access your working copies, e.g. using the command

subst T: C:\TortoiseSVN\trunk\doc

However this can cause the overlays not to update, as TSVNCache will only receive one notification
when a file changes, and that is normally for the original path. This means that your overlays on the
subst path may never be updated.

An easy way to work around this is to exclude the original path from showing overlays, so that the
overlays show up on the subst path instead.

Sometimes you will exclude areas that contain working copies, which saves TSVNCache from scanning and
monitoring for changes, but you still want a visual indication that a folder contains a working copy. The Show
excluded root folders as 'normal' checkbox allows you to do this. With this option, working copy root folders in
any excluded area (drive type not checked, or specifically excluded) will show up as normal and up-to-date, with
a green check mark. This reminds you that you are looking at a working copy, even though the folder overlays
may not be correct. Files do not get an overlay at all. Note that the context menus still work, even though the
overlays are not shown.

As a special exception to this, drives A: and B: are never considered for the Show excluded folders as 'normal'
option. This is because Windows is forced to look on the drive, which can result in a delay of several seconds
when starting Explorer, even if your PC does have a floppy drive.

Daily Use Guide

148

4.31.3.1. Icon Set Selection

Figure 4.81. The Settings Dialog, Icon Set Page

You can change the overlay icon set to the one you like best. Note that if you change overlay set, you may have
to restart your computer for the changes to take effect.

Daily Use Guide

149

4.31.3.2. Enabled Overlay Handlers

Figure 4.82. The Settings Dialog, Icon Handlers Page

Because the number of overlays available is severely restricted, you can choose to disable some handlers to ensure
that the ones you want will be loaded. Because TortoiseSVN uses the common TortoiseOverlays component which
is shared with other Tortoise clients (e.g. TortoiseCVS, TortoiseHg) this setting will affect those clients too.

4.31.4. Network Settings

Daily Use Guide

150

Figure 4.83. The Settings Dialog, Network Page

Here you can configure your proxy server, if you need one to get through your company's firewall.

If you need to set up per-repository proxy settings, you will need to use the Subversion servers file to configure
this. Use Edit to get there directly. Consult the Runtime Configuration Area [http://svnbook.red-bean.com/en/1.8/
svn.advanced.confarea.html] for details on how to use this file.

You can also specify which program TortoiseSVN should use to establish a secure connection to a svn+ssh
repository. We recommend that you use TortoisePlink.exe. This is a version of the popular Plink program, and
is included with TortoiseSVN, but it is compiled as a Windowless app, so you don't get a DOS box popping up
every time you authenticate.

You must specify the full path to the executable. For TortoisePlink.exe this is the standard TortoiseSVN bin
directory. Use the Browse button to help locate it. Note that if the path contains spaces, you must enclose it in
quotes, e.g.

"C:\Program Files\TortoiseSVN\bin\TortoisePlink.exe"

One side-effect of not having a window is that there is nowhere for any error messages to go, so if authentication
fails you will simply get a message saying something like “Unable to write to standard output”. For this reason
we recommend that you first set up using standard Plink. When everything is working, you can use TortoisePlink
with exactly the same parameters.

TortoisePlink does not have any documentation of its own because it is just a minor variant of Plink. Find out about
command line parameters from the PuTTY website [https://www.chiark.greenend.org.uk/~sgtatham/putty/].

To avoid being prompted for a password repeatedly, you might also consider using a password caching tool such
as Pageant. This is also available for download from the PuTTY website.

http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.confarea.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/

Daily Use Guide

151

Finally, setting up SSH on server and clients is a non-trivial process which is beyond the scope of this help file.
However, you can find a guide in the TortoiseSVN FAQ listed under Subversion/TortoiseSVN SSH How-To
[https://tortoisesvn.net/ssh_howto.html].

4.31.5. External Program Settings

Figure 4.84. The Settings Dialog, Diff Viewer Page

Here you can define your own diff/merge programs that TortoiseSVN should use. The default setting is to use
TortoiseMerge which is installed alongside TortoiseSVN.

Read Section 4.11.6, “External Diff/Merge Tools” for a list of some of the external diff/merge programs that
people are using with TortoiseSVN.

4.31.5.1. Diff Viewer

An external diff program may be used for comparing different revisions of files. The external program will need
to obtain the filenames from the command line, along with any other command line options. TortoiseSVN uses
substitution parameters prefixed with %. When it encounters one of these it will substitute the appropriate value.
The order of the parameters will depend on the Diff program you use.

%base
The original file without your changes

%bname
The window title for the base file

%nqbname
The window title for the base file, without quotes

%mine
Your own file, with your changes

https://tortoisesvn.net/ssh_howto.html
https://tortoisesvn.net/ssh_howto.html

Daily Use Guide

152

%yname
The window title for your file

%nqyname
The window title for your file, without quotes

%burl
The URL of the original file, if available

%nqburl
The URL of the original file, if available, without quotes

%yurl
The URL of the second file, if available

%nqyurl
The URL of the second file, if available, without quotes

%brev
The revision of the original file, if available

%nqbrev
The revision of the original file, if available, without quotes

%yrev
The revision of the second file, if available

%nqyrev
The revision of the second file, if available, without quotes

%peg
The peg revision, if available

%nqpeg
The peg revision, if available, without quotes

%fname
The name of the file. This is an empty string if two different files are diffed instead of two states of the same
file.

%nqfname
The name of the file, without quotes

The window titles are not pure filenames. TortoiseSVN treats that as a name to display and creates the names
accordingly. So e.g. if you're doing a diff from a file in revision 123 with a file in your working copy, the names
will be filename : revision 123 and filename : working copy.

For example, with ExamDiff Pro:

C:\Path-To\ExamDiff.exe %base %mine --left_display_name:%bname
 --right_display_name:%yname

or with KDiff3:

C:\Path-To\kdiff3.exe %base %mine --L1 %bname --L2 %yname

or with WinMerge:

C:\Path-To\WinMerge.exe -e -ub -dl %bname -dr %yname %base %mine

Daily Use Guide

153

or with Araxis:

C:\Path-To\compare.exe /max /wait /title1:%bname /title2:%yname
 %base %mine

or with UltraCompare:

C:\Path-To\uc.exe %base %mine -title1 %bname -title2 %yname

or with DiffMerge:

C:\Path-To\DiffMerge.exe -nosplash -t1=%bname -t2=%yname %base %mine

If you use the svn:keywords property to expand keywords, and in particular the revision of a file, then there may
be a difference between files which is purely due to the current value of the keyword. Also if you use svn:eol-
style = native the BASE file will have pure LF line endings whereas your file will have CR-LF line
endings. TortoiseSVN will normally hide these differences automatically by first parsing the BASE file to expand
keywords and line endings before doing the diff operation. However, this can take a long time with large files. If
Convert files when diffing against BASE is unchecked then TortoiseSVN will skip pre-processing the files.

You can also specify a different diff tool to use on Subversion properties. Since these tend to be short simple text
strings, you may want to use a simpler more compact viewer.

If you have configured an alternate diff tool, you can access TortoiseMerge and the third party tool from the

context menus. Context menu → Diff uses the primary diff tool, and Shift+ Context menu → Diff uses the
secondary diff tool.

At the bottom of the dialog you can configure a viewer program for unified-diff files (patch files). No parameters
are required. The Default setting is to use TortoiseUDiff which is installed alongside TortoiseSVN, and colour-
codes the added and removed lines.

Since Unified Diff is just a text format, you can use your favourite text editor if you prefer.

4.31.5.2. Merge Tool

An external merge program used to resolve conflicted files. Parameter substitution is used in the same way as
with the Diff Program.

%base
the original file without your or the others changes

%bname
The window title for the base file

%nqbname
The window title for the base file, without quotes

%mine
your own file, with your changes

%yname
The window title for your file

%nqyname
The window title for your file, without quotes

Daily Use Guide

154

%theirs
the file as it is in the repository

%tname
The window title for the file in the repository

%nqtname
The window title for the file in the repository, without quotes

%merged
the conflicted file, the result of the merge operation

%mname
The window title for the merged file

%nqmname
The window title for the merged file, without quotes

%fname
The name of the conflicted file

%nqfname
The name of the conflicted file, without quotes

For example, with Perforce Merge:

C:\Path-To\P4Merge.exe %base %theirs %mine %merged

or with KDiff3:

C:\Path-To\kdiff3.exe %base %mine %theirs -o %merged
 --L1 %bname --L2 %yname --L3 %tname

or with Araxis:

C:\Path-To\compare.exe /max /wait /3 /title1:%tname /title2:%bname
 /title3:%yname %theirs %base %mine %merged /a2

or with WinMerge (2.8 or later):

C:\Path-To\WinMerge.exe %merged

or with DiffMerge:

C:\Path-To\DiffMerge.exe -caption=%mname -result=%merged -merge
 -nosplash -t1=%yname -t2=%bname -t3=%tname %mine %base %theirs

Daily Use Guide

155

4.31.5.3. Diff/Merge Advanced Settings

Figure 4.85. The Settings Dialog, Diff/Merge Advanced Dialog

In the advanced settings, you can define a different diff and merge program for every file extension. For instance
you could associate Photoshop as the “Diff” Program for .jpg files :-) You can also associate the svn:mime-
type property with a diff or merge program.

To associate using a file extension, you need to specify the extension. Use .bmp to describe Windows bitmap
files. To associate using the svn:mime-type property, specify the mime type, including a slash, for example
text/xml.

Daily Use Guide

156

4.31.6. Saved Data Settings

Figure 4.86. The Settings Dialog, Saved Data Page

For your convenience, TortoiseSVN saves many of the settings you use, and remembers where you have been
lately. If you want to clear out that cache of data, you can do it here.

URL history
Whenever you checkout a working copy, merge changes or use the repository browser, TortoiseSVN keeps a
record of recently used URLs and offers them in a combo box. Sometimes that list gets cluttered with outdated
URLs so it is useful to flush it out periodically.

If you want to remove a single item from one of the combo boxes you can do that in-place. Just click on the
arrow to drop the combo box down, move the mouse over the item you want to remove and type Shift+Del.

Log messages (Input dialog)
TortoiseSVN stores recent commit log messages that you enter. These are stored per repository, so if you
access many repositories this list can grow quite large.

Log messages (Show log dialog)
TortoiseSVN caches log messages fetched by the Show Log dialog to save time when you next show the log.
If someone else edits a log message and you already have that message cached, you will not see the change
until you clear the cache. Log message caching is enabled on the Log Cache tab.

Dialog sizes and positions
Many dialogs remember the size and screen position that you last used.

Authentication data
When you authenticate with a Subversion server, the username and password are cached locally so you don't
have to keep entering them. You may want to clear this for security reasons, or because you want to access
the repository under a different username ... does John know you are using his PC?

Daily Use Guide

157

If you want to clear authentication data for one particular server only, use the Clear... instead of the Clear
all button.

Action log
TortoiseSVN keeps a log of everything written to its progress dialogs. This can be useful when, for example,
you want to check what happened in a recent update command.

The log file is limited in length and when it grows too big the oldest content is discarded. By default 4000
lines are kept, but you can customize that number.

From here you can view the log file content, and also clear it.

4.31.7. Log Caching

Figure 4.87. The Settings Dialog, Log Cache Page

This dialog allows you to configure the log caching feature of TortoiseSVN, which retains a local copy of log
messages and changed paths to avoid time-consuming downloads from the server. Using the log cache can
dramatically speed up the log dialog and the revision graph. Another useful feature is that the log messages can
still be accessed when offline.

Enable log caching
Enables log caching whenever log data is requested. If checked, data will be retrieved from the cache when
available, and any messages not in the cache will be retrieved from the server and added to the cache.

If caching is disabled, data will always be retrieved directly from the server and not stored locally.

Allow ambiguous URLs
Occasionally you may have to connect to a server which uses the same URL for all repositories. Older versions
of svnbridge would do this. If you need to access such repositories you will have to check this option. If
you don't, leave it unchecked to improve performance.

Daily Use Guide

158

Allow ambiguous UUIDs
Some hosting services give all their repositories the same UUID. You may even have done this yourself by
copying a repository folder to create a new one. For all sorts of reasons this is a bad idea - a UUID should
be unique. However, the log cache will still work in this situation if you check this box. If you don't need it,
leave it unchecked to improve performance.

If the repository cannot be contacted
If you are working offline, or if the repository server is down, the log cache can still be used to supply log
messages already held in the cache. Of course the cache may not be up-to-date, so there are options to allow
you to select whether this feature should be used.

When log data is being taken from the cache without contacting the server, the dialog using those message
will show the offline state in its title bar.

Timeout before updating the HEAD revision
When you invoke the log dialog you will normally want to contact the server to check for any newer log
messages. If the timeout set here is non-zero then the server will only be contacted when the timeout has
elapsed since the last time contact. This can reduce server round-trips if you open the log dialog frequently
and the server is slow, but the data shown may not be completely up-to-date. If you want to use this feature
we suggest using a value of 300 (5 minutes) as a compromise.

Days of inactivity until small caches get removed
If you browse around a lot of repositories you will accumulate a lot of log caches. If you're not actively using
them, the cache will not grow very big, so TortoiseSVN purges them after a set time by default. Use this item
to control cache purging.

Maximum size of removed inactive caches
Larger caches are more expensive to reacquire, so TortoiseSVN only purges small caches. Fine tune the
threshold with this value.

Maximum number of tool failures before cache removal
Occasionally something goes wrong with the caching and causes a crash. If this happens the cache is normally
deleted automatically to prevent a recurrence of the problem. If you use the less stable nightly build you may
opt to keep the cache anyway.

4.31.7.1. Cached Repositories

On this page you can see a list of the repositories that are cached locally, and the space used for the cache. If you
select one of the repositories you can then use the buttons underneath.

Click on the Update to completely refresh the cache and fill in any holes. For a large repository this could be very
time consuming, but useful if you are about to go offline and want the best available cache.

Click on the Export button to export the entire cache as a set of CSV files. This could be useful if you want to
process the log data using an external program, although it is mainly useful to the developers.

Click on Delete to remove all cached data for the selected repositories. This does not disable caching for the
repository so the next time you request log data, a new cache will be created.

Daily Use Guide

159

4.31.7.2. Log Cache Statistics

Figure 4.88. The Settings Dialog, Log Cache Statistics

Click on the Details button to see detailed statistics for a particular cache. Many of the fields shown here are
mainly of interest to the developers of TortoiseSVN, so they are not all described in detail.

RAM
The amount of memory required to service this cache.

Disk
The amount of disk space used for the cache. Data is compressed, so disk usage is generally fairly modest.

Connection
Shows whether the repository was available last time the cache was used.

Last update
The last time the cache content was changed.

Last head update
The last time we requested the HEAD revision from the server.

Authors
The number of different authors with messages recorded in the cache.

Paths
The number of paths listed, as you would see using svn log -v.

Daily Use Guide

160

Skip ranges
The number of revision ranges which we have not fetched, simply because they haven't been requested. This
is a measure of the number of holes in the cache.

Max revision
The highest revision number stored in the cache.

Revision count
The number of revisions stored in the cache. This is another measure of cache completeness.

4.31.8. Client Side Hook Scripts

Figure 4.89. The Settings Dialog, Hook Scripts Page

This dialog allows you to set up hook scripts which will be executed automatically when certain Subversion actions
are performed. As opposed to the hook scripts explained in Section 3.3, “Server side hook scripts”, these scripts
are executed locally on the client.

One application for such hooks might be to call a program like SubWCRev.exe to update version numbers after
a commit, and perhaps to trigger a rebuild.

Note that you can also specify such hook scripts using special properties on your working copy. See the section
Section 4.18.2, “TortoiseSVN Project Properties” for details.

Daily Use Guide

161

Figure 4.90. The Settings Dialog, Configure Hook Scripts

To add a new hook script, simply click Add and fill in the details.

There are currently these types of hook script available

Start-commit
Called before the commit dialog is shown. You might want to use this if the hook modifies a versioned file
and affects the list of files that need to be committed and/or commit message. However you should note that
because the hook is called at an early stage, the full list of objects selected for commit is not available.

Manual Pre-commit
If this is specified, the commit dialog shows a button Run Hook which when clicked runs the specified hook
script. The hook script receives a list of all checked files and folders and the commit message if there was
one entered.

Check-commit
Called after the user clicks OK in the commit dialog, and before the commit dialog closes. This hook gets a
list of all the checked files. If the hook returns an error, the commit dialog stays open.

If the returned error message contains paths on newline separated lines, those paths will get selected in the
commit dialog after the error message is shown.

Pre-commit
Called after the user clicks OK in the commit dialog, and before the actual commit begins. This hook has a
list of exactly what will be committed.

Post-commit
Called after the commit finishes successfully.

Start-update
Called before the update-to-revision dialog is shown.

Pre-update
Called before the actual Subversion update or switch begins.

Post-update
Called after the update, switch or checkout finishes (whether successful or not).

Pre-connect
Called before an attempt to contact the repository. Called at most once in five minutes.

Pre-lock
Called before an attempt to lock a file.

Post-lock
Called after a file has been locked.

Daily Use Guide

162

A hook is defined for a particular working copy path. You only need to specify the top level path; if you perform
an operation in a sub-folder, TortoiseSVN will automatically search upwards for a matching path.

Next you must specify the command line to execute, starting with the path to the hook script or executable. This
could be a batch file, an executable file or any other file which has a valid windows file association, e.g. a perl
script. Note that the script must not be specified using a UNC path as Windows shell execute will not allow such
scripts to run due to security restrictions.

The command line includes several parameters which get filled in by TortoiseSVN. The parameters passed depend
upon which hook is called. Each hook has its own parameters which are passed in the following order:

Start-commit
PATH MESSAGEFILE CWD

Manual Pre-commit
PATH MESSAGEFILE CWD

Check-commit
PATH MESSAGEFILE CWD

Pre-commit
PATH DEPTH MESSAGEFILE CWD

Post-commit
PATH DEPTH MESSAGEFILE REVISION ERROR CWD

Start-update
PATH CWD

Pre-update
PATH DEPTH REVISION CWD

Post-update
PATH DEPTH REVISION ERROR CWD RESULTPATH

Pre-connect
no parameters are passed to this script. You can pass a custom parameter by appending it to the script path.

Pre-lock
PATH LOCK FORCE MESSAGEFILE ERROR CWD

Post-lock
PATH LOCK FORCE MESSAGEFILE ERROR CWD

The meaning of each of these parameters is described here:

PATH
A path to a temporary file which contains all the paths for which the operation was started. Each path is on
a separate line in the temp file.

Note that for operations done remotely, e.g. in the repository browser, those paths are not local paths but the
urls of the affected items.

DEPTH
The depth with which the commit/update is done.

Possible values are:

-2
svn_depth_unknown

-1
svn_depth_exclude

Daily Use Guide

163

0
svn_depth_empty

1
svn_depth_files

2
svn_depth_immediates

3
svn_depth_infinity

MESSAGEFILE
Path to a file containing the log message for the commit. The file contains the text in UTF-8 encoding. After
successful execution of the start-commit hook, the log message is read back, giving the hook a chance to
modify it.

REVISION
The repository revision to which the update should be done or after a commit completes.

LOCK
Either true when locking, or false when unlocking.

FORCE
Either true or false, depending on whether the operation was forced or not.

ERROR
Path to a file containing the error message. If there was no error, the file will be empty.

CWD
The current working directory with which the script is run. This is set to the common root directory of all
affected paths.

RESULTPATH
A path to a temporary file which contains all the paths which were somehow touched by the operation. Each
path is on a separate line in the temp file.

Note that although we have given these parameters names for convenience, you do not have to refer to those names
in the hook settings. All parameters listed for a particular hook are always passed, whether you want them or not ;-)

If you want the Subversion operation to hold off until the hook has completed, check Wait for the script to finish.

Normally you will want to hide ugly DOS boxes when the script runs, so Hide the script while running is checked
by default.

Sample client hook scripts can be found in the contrib folder in the TortoiseSVN repository [https://
svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/hook-scripts]. (Section 3, “License” explains how to access the
repository.)

When debugging hook scripts you may want to echo progress lines to the DOS console, or insert a pause to stop the
console window disappearing when the script completes. Because I/O is redirected this will not normally work.
However you can redirect input and output explicitly to CON to overcome this. e.g.

echo Checking Status > con
pause < con > con

A small tool is included in the TortoiseSVN installation folder named ConnectVPN.exe. You can use this tool
configured as a pre-connect hook to connect automatically to your VPN before TortoiseSVN tries to connect to a
repository. Just pass the name of the VPN connection as the first parameter to the tool.

https://svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/hook-scripts
https://svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/hook-scripts
https://svn.code.sf.net/p/tortoisesvn/code/trunk/contrib/hook-scripts

Daily Use Guide

164

4.31.8.1. Issue Tracker Integration

TortoiseSVN can use a COM plugin to query issue trackers when in the commit dialog. The use of such plugins
is described in Section 4.29.2, “Getting Information from the Issue Tracker”. If your system administrator has
provided you with a plugin, which you have already installed and registered, this is the place to specify how it
integrates with your working copy.

Figure 4.91. The Settings Dialog, Issue Tracker Integration Page

Click on Add... to use the plugin with a particular working copy. Here you can specify the working copy path,
choose which plugin to use from a drop down list of all registered issue tracker plugins, and any parameters to
pass. The parameters will be specific to the plugin, but might include your user name on the issue tracker so that
the plugin can query for issues which are assigned to you.

If you want all users to use the same COM plugin for your project, you can specify the plugin also with the
properties bugtraq:provideruuid, bugtraq:provideruuid64 and bugtraq:providerparams.

bugtraq:provideruuid
This property specifies the COM UUID of the IBugtraqProvider, for example {91974081-2DC7-4FB1-
B3BE-0DE1C8D6CE4E}. (This example is the UUID of the Gurtle bugtraq provider [http://
code.google.com/p/gurtle/], which is a provider for the Google Code [http://code.google.com/hosting/] issue
tracker.)

bugtraq:provideruuid64
This is the same as bugtraq:provideruuid, but for the 64-bit version of the IBugtraqProvider.

bugtraq:providerparams
This property specifies the parameters passed to the IBugtraqProvider.

Please check the documentation of your IBugtraqProvider plugin to find out what to specify in these two properties.

http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/hosting/
http://code.google.com/hosting/

Daily Use Guide

165

4.31.9. TortoiseBlame Settings

Figure 4.92. The Settings Dialog, TortoiseBlame Page

The settings used by TortoiseBlame are controlled from the main context menu, not directly with TortoiseBlame
itself.

Colors
TortoiseBlame can use the background colour to indicate the age of lines in a file. You set the endpoints
by specifying the colours for the newest and oldest revisions, and TortoiseBlame uses a linear interpolation
between these colours according to the repository revision indicated for each line.

You can specify different colours to use for the locator bar. The default is to use strong contrast on the locator
bar while keeping the main window background light so that you can still read the text.

Font
You can select the font used to display the text, and the point size to use. This applies both to the file content,
and to the author and revision information shown in the left pane.

Tabs
Defines how many spaces to use for expansion when a tab character is found in the file content.

Daily Use Guide

166

4.31.10. TortoiseUDiff Settings

Figure 4.93. The Settings Dialog, TortoiseUDiff Page

The settings used by TortoiseUDiff are controlled from the main context menu, not directly with TortoiseUDiff
itself.

Colors
The default colors used by TortoiseUDiff are usually ok, but you can configure them here.

Font
You can select the font used to display the text, and the point size to use.

Tabs
Defines how many spaces to use for expansion when a tab character is found in the file diff.

Daily Use Guide

167

4.31.11. Exporting TSVN Settings

Figure 4.94. The Settings Dialog, Sync Page

You can sync all TortoiseSVN settings to and from an encrypted file. The file is encrpyted with the password you
enter so you don't have to worry if you store that file on a cloud folder like OneDrive, GDrive, DropBox, ...

When a path and password is specified, TortoiseSVN will sync all settings automatically and keep them in sync.

You can also export/import an encrypted files with all the settings manually. When you do that, you're asked for
the path of the file and the password to encrypt/decrypt the settings file.

When exporting the settings manually, you can also optionally include all local settings which are not included
in a normal export or in a sync. Local settings are settings which include local paths which usually vary between
computers. These local settings include the configured diff and merge tools and hook scripts.

4.31.12. Advanced Settings

A few infrequently used settings are available only in the advanced page of the settings dialog. These settings
modify the registry directly and you have to know what each of these settings is used for and what it does. Do not
modify these settings unless you are sure you need to change them.

AllowAuthSave
Sometimes multiple users use the same account on the same computer. In such situations it's not really wanted
to save the authentication data. Setting this value to false disables the save authentication button
in the authentication dialog.

AllowUnversionedObstruction
If an update adds a new file from the repository which already exists in the local working copy as an
unversioned file, the default action is to keep the local file, showing it as a (possibly) modified version of
the new file from the repository. If you would prefer TortoiseSVN to create a conflict in such situations, set
this value to false.

Daily Use Guide

168

AlwaysExtendedMenu
As with the explorer, TortoiseSVN shows additional commands if the Shift key is pressed while the context
menu is opened. To force TortoiseSVN to always show those extended commands, set this value to true.

AutoCompleteMinChars
The minimum amount of chars from which the editor shows an auto-completion popup. The default value is 3.

AutocompleteRemovesExtensions
The auto-completion list shown in the commit message editor displays the names of files listed for commit.
To also include these names with extensions removed, set this value to true.

BlockPeggedExternals
File externals that are pegged to a specific revision are blocked by default from being selected for a commit.
This is because a subsequent update would revert those changes again unless the pegged revision of the
external is adjusted.

Set this value to false in case you still want to commit changes to such external files.

BlockStatus
If you don't want the explorer to update the status overlays while another TortoiseSVN command is running
(e.g. Update, Commit, ...) then set this value to true.

CacheTrayIcon
To add a cache tray icon for the TSVNCache program, set this value to true. This is really only useful for
developers as it allows you to terminate the program gracefully.

ColumnsEveryWhere
The extra columns the TortoiseSVN adds to the details view in Windows Explorer are normally only active
in a working copy. If you want those to be accessible everywhere, not just in working copies, set this value
to true. Note that the extra columns are only available in XP. Vista and later doesn't support that feature
any more. However some third-party explorer replacements do support those even on Windows versions later
than XP.

ConfigDir
You can specify a different location for the Subversion configuration file here. This will affect all TortoiseSVN
operations.

CtrlEnter
In most dialogs in TortoiseSVN, you can use Ctrl+Enter to dismiss the dialog as if you clicked on the OK
button. If you don't want this, set this value to false.

Debug
Set this to true if you want a dialog to pop up for every command showing the command line used to start
TortoiseProc.exe.

DebugOutputString
Set this to true if you want TortoiseSVN to print out debug messages during execution. The messages can
be captured with special debugging tools only.

DialogTitles
The default format (value of 0) of dialog titles is url/path - name of dialog - TortoiseSVN.
If you set this value to 1, the format changes to name of dialog - url/path - TortoiseSVN.

DiffBlamesWithTortoiseMerge
TortoiseSVN allows you to assign an external diff viewer. Most such viewers, however, are not suited for
change blaming (Section 4.24.2, “Blame Differences”), so you might wish to fall back to TortoiseMerge in
this case. To do so, set this value to true.

DlgStickySize
This value specifies the number of pixels a dialog has to be near a border before the dialog sticks to it. The
default value is 3. To disable this value set the value to zero.

Daily Use Guide

169

FixCaseRenames
Some apps change the case of filenames without notice but those changes aren't really necessary nor wanted.
For example a change from file.txt to FILE.TXT wouldn't bother normal Windows applications, but
Subversion is case sensitive in these situations. So TortoiseSVN automatically fixes such case changes.

If you don't want TortoiseSVN to automatically fix such case changes for you, you can set this value to false.

FullRowSelect
The status list control which is used in various dialogs (e.g., commit, check-for-modifications, add, revert, ...)
uses full row selection (i.e., if you select an entry, the full row is selected, not just the first column). This is
fine, but the selected row then also covers the background image on the bottom right, which can look ugly.
To disable full row select, set this value to false.

GroupTaskbarIconsPerRepo
This option determines how the Win7 taskbar icons of the various TortoiseSVN dialogs and windows are
grouped together. This option has no effect on Vista!

1. The default value is 0. With this setting, the icons are grouped together by application type. All dialogs
from TortoiseSVN are grouped together, all windows from TortoiseMerge are grouped together, ...

Figure 4.95. Taskbar with default grouping

2. If set to 1, then instead of all dialogs in one single group per application, they're grouped together by
repository. For example, if you have a log dialog and a commit dialog open for repository A, and a check-
for-modifications dialog and a log dialog for repository B, then there are two application icon groups shown
in the Win7 taskbar, one group for each repository. But TortoiseMerge windows are not grouped together
with TortoiseSVN dialogs.

Figure 4.96. Taskbar with repository grouping

3. If set to 2, then the grouping works as with the setting set to 1, except that TortoiseSVN, TortoiseMerge,
TortoiseBlame, TortoiseIDiff and TortoiseUDiff windows are all grouped together. For example, if you
have the commit dialog open and then double click on a modified file, the opened TortoiseMerge diff
window will be put in the same icon group on the taskbar as the commit dialog icon.

Figure 4.97. Taskbar with repository grouping

Daily Use Guide

170

4. If set to 3, then the grouping works as with the setting set to 1, but the grouping isn't done according to
the repository but according to the working copy. This is useful if you have all your projects in the same
repository but different working copies for each project.

5. If set to 4, then the grouping works as with the setting set to 2, but the grouping isn't done according to
the repository but according to the working copy.

HideExternalInfo
If this is set to false, then every svn:externals is shown during an update separately.

If it is set to true (the default), then update information for externals is only shown if the externals are
affected by the update, i.e. changed in some way. Otherwise nothing is shown as with normal files and folders.

GroupTaskbarIconsPerRepoOverlay
This has no effect if the option GroupTaskbarIconsPerRepo is set to 0 (see above).

If this option is set to true, then every icon on the Win7 taskbar shows a small colored rectangle overlay,
indicating the repository the dialogs/windows are used for.

Figure 4.98. Taskbar grouping with repository color overlays

IncludeExternals
By default, TortoiseSVN always runs an update with externals included. This avoids problems with
inconsistent working copies. If you have however a lot of externals set, an update can take quite a while. Set
this value to false to run the default update with externals excluded. To update with externals included,
either run the Update to revision... dialog or set this value to true again.

LogFindCopyFrom
When the log dialog is started from the merge wizard, already merged revisions are shown in gray, but
revisions beyond the point where the branch was created are also shown. These revisions are shown in black
because those can't be merged.

If this option is set to true then TortoiseSVN tries to find the revision where the branch was created from
and hide all the revisions that are beyond that revision. Since this can take quite a while, this option is disabled
by default. Also this option doesn't work with some SVN servers (e.g., Google Code Hosting, see issue #5471
[http://code.google.com/p/support/issues/detail?id=5471]).

LogMultiRevFormat
A format string for the log messages when multiple revisions are selected in the log dialog.

You can use the following placeholders in your format string:

%1!ld!
gets replaced with the revision number text

%2!s!
gets replaced with the short log message of the revision

LogStatusCheck
The log dialog shows the revision the working copy path is at in bold. But this requires that the log dialog
fetches the status of that path. Since for very big working copies this can take a while, you can set this value
to false to deactivate this feature.

MergeLogSeparator
When you merge revisions from another branch, and merge tracking information is available, the log messages
from the revisions you merge will be collected to make up a commit log message. A pre-defined string is

http://code.google.com/p/support/issues/detail?id=5471
http://code.google.com/p/support/issues/detail?id=5471

Daily Use Guide

171

used to separate the individual log messages of the merged revisions. If you prefer, you can set this to a value
containing a separator string of your choice.

NumDiffWarning
If you want to show the diff at once for more items than specified with this settings, a warning dialog is shown
first. The default is 10.

OldVersionCheck
TortoiseSVN checks whether there's a new version available about once a week. If an updated version is
found, the commit dialog shows a link control with that info. If you prefer the old behavior back where a
dialog pops up notifying you about the update, set this value to true.

RepoBrowserTrySVNParentPath
The repository browser tries to fetch the web page that's generated by an SVN server configured with the
SVNParentPath directive to get a list of all repositories. To disable that behavior, set this value to false.

ScintillaDirect2D
This option enables the use of Direct2D accelerated drawing in the Scintilla control which is used as the edit
box in e.g. the commit dialog, and also for the unified diff viewer. With some graphic cards however this
sometimes doesn't work properly so that the cursor to enter text isn't always visible. If that happens, you can
turn this feature off by setting this value to false.

OutOfDateRetry
This parameter specifies how TortoiseSVN behaves if a commit fails due to an out-of-date error:

0
The user is asked whether to update the working copy or not, and the commit dialog is not reopened
after the update.

1
This is the default. The user is asked whether to update the working copy or not, and the commit dialog
is reopened after the update so the user can proceed with the commit right away.

2
Similar to 1, but instead of updating only the paths selected for a commit, the update is done on the
working copy root. This helps to avoid inconsistent working copies.

3
The user is not asked to update the working copy. The commit simply fails with the out-of-date error
message.

ShellMenuAccelerators
TortoiseSVN uses accelerators for its explorer context menu entries. Since this can lead to doubled
accelerators (e.g. the SVN Commit has the Alt-C accelerator, but so does the Copy entry of explorer). If
you don't want or need the accelerators of the TortoiseSVN entries, set this value to false.

ShowContextMenuIcons
This can be useful if you use something other than the windows explorer or if you get problems with the
context menu displaying incorrectly. Set this value to false if you don't want TortoiseSVN to show icons
for the shell context menu items. Set this value to true to show the icons again.

ShowAppContextMenuIcons
If you don't want TortoiseSVN to show icons for the context menus in its own dialogs, set this value to false.

StyleCommitMessages
The commit and log dialog use styling (e.g. bold, italic) in commit messages (see Section 4.4.5, “Commit Log
Messages” for details). If you don't want to do this, set the value to false.

UpdateCheckURL
This value contains the URL from which TortoiseSVN tries to download a text file to find out if there are
updates available. This might be useful for company admins who don't want their users to update TortoiseSVN
until they approve it.

Daily Use Guide

172

VersionCheck
TortoiseSVN checks whether there's a new version available about once a week. If you don't want
TortoiseSVN to do this check, set this value to false.

4.32. Final Step

Donate!

Even though TortoiseSVN and TortoiseMerge are free, you can support the developers by sending in patches
and playing an active role in the development. You can also help to cheer us up during the endless hours
we spend in front of our computers.

While working on TortoiseSVN we love to listen to music. And since we spend many hours on the project
we need a lot of music. Therefore we have set up some wish-lists with our favourite music CDs and DVDs:
https://tortoisesvn.net/donate.html [https://tortoisesvn.net/donate.html] Please also have a look at the list
of people who contributed to the project by sending in patches or translations.

https://tortoisesvn.net/donate.html
https://tortoisesvn.net/donate.html

173

Chapter 5. Project Monitor
The project monitor is a helpful tool that monitors repositories and notifies you in case there are new commits.

The projects can be monitored via a working copy path or directly via their repository URLs.

The project monitor scans each project in a configurable interval, and every time new commits are detected a
notification popup is shown. Also the icon that is added to the system tray changes to indicate that there are new
commits.

Snarl

If Snarl [https://snarl.fullphat.net/] is installed and active, then the project monitor automatically
uses Snarl to show the notifications about newly detected commits.

5.1. Adding projects to monitor

If you first start the project monitor, the tree view on the left side is empty. To add projects, click on the button
at the top of the dialog named Add Project.

Figure 5.1. The edit project dialog of the project monitor

To add a project for monitoring, fill in the required information. The name of the project is not optional and must
be filled in, all other information is optional.

If the box for Path or Url is left empty, then a folder is added. This is useful to group monitored projects.

The fields Username and Password should only be filled in if the repository does not provide anonymous
read access, and only if the authentication is not stored by Subversion itself. If you're accessing the monitored
repository with TortoiseSVN or other svn clients and you've stored the authentication already, you should leave
this empty: you won't have to edit those projects manually if the password changes.

https://snarl.fullphat.net/
https://snarl.fullphat.net/

Project Monitor

174

The Monitor interval in minutes specifies the minutes to wait in between checks. The smallest interval
is one minute.

check interval

If there are a lot of users monitoring the same repository and the bandwidth on the server is limited,
a repository admin can set the minimum for check intervals using an svnrobots.txt file. A
detailed explanation on how this works can be found on the project monitor website:

http://stefanstools.sourceforge.net/svnrobots.html [http://stefanstools.sourceforge.net/
svnrobots.html]

5.2. Monitor dialog

Figure 5.2. The main dialog of the project monitor

The project monitor shows all monitored projects on the left in a tree view. The projects can be moved around,
for example one project can be moved below another project, making it a child/subproject.

A click on a project shows all the log messages of that project on the right.

Projects that have updates are shown in bold, with the number of new commits in brackets at the right. A click
on a project marks it automatically as read.

5.2.1. Main operations

The toolbar at the top of the dialog allows to configure and operate the project monitor.

Check Now
While each monitored project is checked according to the interval that's set up, clicking this button will force
a check of all projects immediately. Note that if there are updates, the notification won't show up until all
projects have been checked.

Add Project
Opens a new dialog to set up a new project for monitoring.

http://stefanstools.sourceforge.net/svnrobots.html
http://stefanstools.sourceforge.net/svnrobots.html
http://stefanstools.sourceforge.net/svnrobots.html

Project Monitor

175

Edit
Opens the configuration dialog for the selected project.

Remove
Removes the selected project after a confirmation dialog is shown.

Mark all as read
Marks all revisions in all projects as read. Note that if you select a project with unread revisions, those revisions
are automatically marked as read when you select another project.

If you hold down the Shift key when clicking the button, all error states are also cleared if there are any.

Update all
Runs an Update on all monitored working copies. Projects that are monitored via an url are not updated, only
those that are set up with a working copy path.

Options
Shows a dialog to configure the behavior of the project monitor.

176

Chapter 6. The SubWCRev Program
SubWCRev is Windows console program which can be used to read the status of a Subversion working copy and
optionally perform keyword substitution in a template file. This is often used as part of the build process as a
means of incorporating working copy information into the object you are building. Typically it might be used to
include the revision number in an “About” box.

6.1. The SubWCRev Command Line

SubWCRev reads the Subversion status of all files in a working copy, excluding externals by default. It records
the highest commit revision number found, and the commit timestamp of that revision, it also records whether
there are local modifications in the working copy, or mixed update revisions. The revision number, update revision
range and modification status are displayed on stdout.

SubWCRev.exe is called from the command line or a script, and is controlled using the command line parameters.

SubWCRev WorkingCopyPath [SrcVersionFile DstVersionFile] [-nmdfe]

WorkingCopyPath is the path to the working copy being checked. You can only use SubWCRev on working
copies, not directly on the repository. The path may be absolute or relative to the current working directory.

If you want SubWCRev to perform keyword substitution, so that fields like repository revision and URL are saved
to a text file, you need to supply a template file SrcVersionFile and an output file DstVersionFile which
contains the substituted version of the template.

You can specify ignore patterns for SubWCRev to prevent specific files and paths from being considered. The
patterns are read from a file named .subwcrevignore. The file is read from the specified path, and also from
the working copy root. If the file does not exist, no files or paths are ignored. The .subwcrevignore file
can contain multiple patterns, separated by newlines. The patterns are matched against the paths relative to the
repository root and paths relative to the path of the .subwcrevignore file. For example, to ignore all files in
the doc folder of the TortoiseSVN working copy, the .subwcrevignore would contain the following lines:

/trunk/doc
/trunk/doc/*

Or, assuming the .subwcrevignore file is in the working copy root which is checked out from trunk, using
the patterns

doc
doc/*

is the same as the example above.

To ignore all images, the ignore patterns could be set like this:

*.png
*.jpg
*.ico
*.bmp

Important

The ignore patterns are case-sensitive, just like Subversion is.

The SubWCRev Program

177

Tip

To create a file with a starting dot in the Windows explorer, enter .subwcrevignore.. Note the
trailing dot.

There are a number of optional switches which affect the way SubWCRev works. If you use more than one, they
must be specified as a single group, e.g. -nm, not -n -m.

Switch Description

-n If this switch is given, SubWCRev will exit with ERRORLEVEL 7 if the working copy
contains local modifications. This may be used to prevent building with uncommitted changes
present.

-N If this switch is given, SubWCRev will exit with ERRORLEVEL 11 if the working copy
contains unversioned items that are not ignored.

-m If this switch is given, SubWCRev will exit with ERRORLEVEL 8 if the working copy
contains mixed revisions. This may be used to prevent building with a partially updated
working copy.

-d If this switch is given, SubWCRev will exit with ERRORLEVEL 9 if the destination file
already exists.

-f If this switch is given, SubWCRev will include the last-changed revision of folders. The
default behaviour is to use only files when getting the revision numbers.

-e If this switch is given, SubWCRev will examine directories which are included with
svn:externals, but only if they are from the same repository. The default behaviour is
to ignore externals.

-E If this switch is given, same as -e, but it ignores the externals with explicit revisions, when
the revision range inside of them is only the given explicit revision in the properties. So it
doesn't lead to mixed revisions.

-x If this switch is given, SubWCRev will output the revision numbers in HEX.

-X If this switch is given, SubWCRev will output the revision numbers in HEX, with '0X'
prepended.

-F If this switch is given, SubWCRev will ignore any .subwcrevignore files and include
all files.

-q If this switch is given, SubWCRev will perform the keyword substitution without showing
working copy status on stdout.

Table 6.1. List of available command line switches

If there is no error, SubWCRev returns zero. But in case an error occurs, the error message is written to stderr and
shown in the console. And the returned error codes are:

Error Code Description

1 Syntax error. One or more command line parameters are invalid.

2 The file or folder specified on the command line was not found.

3 The input file could not be opened, or the target file could not be created.

4 Could not allocate memory. This could happen if e.g. the source file is too big.

5 The source file can not be scanned properly.

6 SVN error: Subversion returned with an error when SubWCRev tried to find the information
from the working copy.

7 The working copy has local modifications. This requires the -n switch.

The SubWCRev Program

178

Error Code Description

8 The working copy has mixed revisions. This requires the -m switch.

9 The output file already exists. This requires the -d switch.

10 The specified path is not a working copy or part or one.

11 The working copy has unversioned files or folders in it. This requires the -N switch.

Table 6.2. List of SubWCRev error codes

6.2. Keyword Substitution

If a source and destination files are supplied, SubWCRev copies source to destination, performing keyword
substitution as follows:

Keyword Description

$WCREV$ Replaced with the highest commit revision in the working copy.

$WCREV&$ Replaced with the highest commit revision in the working copy, ANDed with
the value after the & char. For example: $WCREV&0xFFFF$

$WCREV-$, $WCREV+$ Replaced with the highest commit revision in the working copy, with the value
after the + or - char added or subtracted. For example: $WCREV-1000$

$WCDATE$, $WCDATEUTC
$

Replaced with the commit date/time of the highest commit revision.
By default, international format is used: yyyy-mm-dd hh:mm:ss.
Alternatively, you can specify a custom format which will be used with
strftime(), for example: $WCDATE=%a %b %d %I:%M:%S %p$. For
a list of available formatting characters, look at the online reference [http://
msdn.microsoft.com/en-us/library/fe06s4ak.aspx].

$WCNOW$, $WCNOWUTC$ Replaced with the current system date/time. This can be used to indicate the
build time. Time formatting can be used as described for $WCDATE$.

$WCRANGE$ Replaced with the update revision range in the working copy. If the working
copy is in a consistent state, this will be a single revision. If the working copy
contains mixed revisions, either due to being out of date, or due to a deliberate
update-to-revision, then the range will be shown in the form 100:200.

$WCMIXED$ $WCMIXED?TText:FText$ is replaced with TText if there are mixed
update revisions, or FText if not.

$WCMODS$ $WCMODS?TText:FText$ is replaced with TText if there are local
modifications, or FText if not.

$WCUNVER$ $WCUNVER?TText:FText$ is replaced with TText if there are
unversioned items in the working copy, or FText if not.

$WCEXTALLFIXED$ $WCEXTALLFIXED?TText:FText$ is replaced with TText if all
externals are fixed to an explicit revision, or FText if not.

$WCISTAGGED$ $WCISTAGGED?TText:FText$ is replaced with TText if the repository
URL contains the tags classification pattern, or FText if not.

$WCURL$ Replaced with the repository URL of the working copy path passed to
SubWCRev.

$WCINSVN$ $WCINSVN?TText:FText$ is replaced with TText if the entry is
versioned, or FText if not.

$WCNEEDSLOCK$ $WCNEEDSLOCK?TText:FText$ is replaced with TText if the entry has
the svn:needs-lock property set, or FText if not.

$WCISLOCKED$ $WCISLOCKED?TText:FText$ is replaced with TText if the entry is
locked, or FText if not.

http://msdn.microsoft.com/en-us/library/fe06s4ak.aspx
http://msdn.microsoft.com/en-us/library/fe06s4ak.aspx
http://msdn.microsoft.com/en-us/library/fe06s4ak.aspx

The SubWCRev Program

179

Keyword Description

$WCLOCKDATE$,
$WCLOCKDATEUTC$

Replaced with the lock date. Time formatting can be used as described for
$WCDATE$.

$WCLOCKOWNER$ Replaced with the name of the lock owner.

$WCLOCKCOMMENT$ Replaced with the comment of the lock.

$WCUNVER$ $WCUNVER?TText:FText$ is replaced with TText if there are
unversioned files or folders in the working copy, or FText if not.

Table 6.3. List of available keywords

SubWCRev does not directly support nesting of expressions, so for example you cannot use an expression like:

#define SVN_REVISION "$WCMIXED?$WCRANGE$:$WCREV$$"

But you can usually work around it by other means, for example:

#define SVN_RANGE $WCRANGE$
#define SVN_REV $WCREV$
#define SVN_REVISION "$WCMIXED?SVN_RANGE:SVN_REV$"

Tip

Some of these keywords apply to single files rather than to an entire working copy, so it only
makes sense to use these when SubWCRev is called to scan a single file. This applies to
$WCINSVN$, $WCNEEDSLOCK$, $WCISLOCKED$, $WCLOCKDATE$, $WCLOCKOWNER$ and
$WCLOCKCOMMENT$.

6.3. Keyword Example

The example below shows how keywords in a template file are substituted in the output file.

// Test file for SubWCRev

char *Revision = "$WCREV$";
char *Revision16 = "$WCREV&0xFF$";
char *Revisionp100 = "$WCREV+100$";
char *Revisionm100 = "$WCREV-100$";
char *Modified = "$WCMODS?Modified:Not modified$";
char *Unversioned = "$WCUNVER?Unversioned items found:no unversioned items$";
char *Date = "$WCDATE$";
char *CustDate = "$WCDATE=%a, %d %B %Y$";
char *DateUTC = "$WCDATEUTC$";
char *CustDateUTC = "$WCDATEUTC=%a, %d %B %Y$";
char *TimeNow = "$WCNOW$";
char *TimeNowUTC = "$WCNOWUTC$";
char *RevRange = "$WCRANGE$";
char *Mixed = "$WCMIXED?Mixed revision WC:Not mixed$";
char *ExtAllFixed = "$WCEXTALLFIXED?All externals fixed:Not all externals fixed$";
char *IsTagged = "$WCISTAGGED?Tagged:Not tagged$";
char *URL = "$WCURL$";
char *isInSVN = "$WCINSVN?versioned:not versioned$";
char *needslck = "$WCNEEDSLOCK?TRUE:FALSE$";

The SubWCRev Program

180

char *islocked = "$WCISLOCKED?locked:not locked$";
char *lockdateutc = "$WCLOCKDATEUTC$";
char *lockdate = "$WCLOCKDATE$";
char *lockcustutc = "$WCLOCKDATEUTC=%a, %d %B %Y$";
char *lockcust = "$WCLOCKDATE=%a, %d %B %Y$";
char *lockown = "$WCLOCKOWNER$";
char *lockcmt = "$WCLOCKCOMMENT$";

#if $WCMODS?1:0$
#error Source is modified
#endif

// End of file

After running SubWCRev.exe path\to\workingcopy testfile.tmpl testfile.txt, the output
file testfile.txt would looks like this:

// Test file for SubWCRev

char *Revision = "22837";
char *Revision16 = "53";
char *Revisionp100 = "22937";
char *Revisionm100 = "22737";
char *Modified = "Modified";
char *Unversioned = "no unversioned items";
char *Date = "2012/04/26 18:47:57";
char *CustDate = "Thu, 26 April 2012";
char *DateUTC = "2012/04/26 16:47:57";
char *CustDateUTC = "Thu, 26 April 2012";
char *TimeNow = "2012/04/26 20:51:17";
char *TimeNowUTC = "2012/04/26 18:51:17";
char *RevRange = "22836:22837";
char *Mixed = "Mixed revision WC";
char *ExtAllFixed = "All externals fixed";
char *IsTagged = "Not tagged";
char *URL = "https://svn.code.sf.net/p/tortoisesvn/code/trunk";
char *isInSVN = "versioned";
char *needslck = "FALSE";
char *islocked = "not locked";
char *lockdateutc = "1970/01/01 00:00:00";
char *lockdate = "1970/01/01 01:00:00";
char *lockcustutc = "Thu, 01 January 1970";
char *lockcust = "Thu, 01 January 1970";
char *lockown = "";
char *lockcmt = "";

#if 1
#error Source is modified
#endif

// End of file

Tip

A file like this will be included in the build so you would expect it to be versioned. Be sure to version
the template file, not the generated file, otherwise each time you regenerate the version file you need
to commit the change, which in turn means the version file needs to be updated.

The SubWCRev Program

181

6.4. COM interface

If you need to access Subversion revision information from other programs, you can use the COM interface of
SubWCRev. The object to create is SubWCRev.object, and the following methods are supported:

Method Description

.GetWCInfo This method traverses the working copy gathering the revision information.
Naturally you must call this before you can access the information using the
remaining methods. The first parameter is the path. The second parameter
should be true if you want to include folder revisions. Equivalent to the -
f command line switch. The third parameter should be true if you want to
include svn:externals. Equivalent to the -e command line switch.

.GetWCInfo2 The same as GetWCInfo() but with a fourth parameter that sets the
equivalent to the -E command line switch.

.Revision The highest commit revision in the working copy. Equivalent to $WCREV$.

.Date The commit date/time of the highest commit revision. Equivalent to
$WCDATE$.

.Author The author of the highest commit revision, that is, the last person to commit
changes to the working copy.

.MinRev The minimum update revision, as shown in $WCRANGE$

.MaxRev The maximum update revision, as shown in $WCRANGE$

.HasModifications True if there are local modifications

.HasUnversioned True if there are unversioned items

.Url Replaced with the repository URL of the working copy path used in
GetWCInfo. Equivalent to $WCURL$.

.IsSvnItem True if the item is versioned.

.NeedsLocking True if the item has the svn:needs-lock property set.

.IsLocked True if the item is locked.

.LockCreationDate String representing the date when the lock was created, or an empty string if
the item is not locked.

.LockOwner String representing the lock owner, or an empty string if the item is not locked.

.LockComment The message entered when the lock was created.

Table 6.4. COM/automation methods supported

The following example shows how the interface might be used.

// testCOM.js - javascript file
// test script for the SubWCRev COM/Automation-object

filesystem = new ActiveXObject("Scripting.FileSystemObject");

revObject1 = new ActiveXObject("SubWCRev.object");
revObject2 = new ActiveXObject("SubWCRev.object");
revObject3 = new ActiveXObject("SubWCRev.object");
revObject4 = new ActiveXObject("SubWCRev.object");

revObject1.GetWCInfo(
 filesystem.GetAbsolutePathName("."), 1, 1);
revObject2.GetWCInfo(
 filesystem.GetAbsolutePathName(".."), 1, 1);

The SubWCRev Program

182

revObject3.GetWCInfo(
 filesystem.GetAbsolutePathName("SubWCRev.cpp"), 1, 1);
revObject4.GetWCInfo2(
 filesystem.GetAbsolutePathName("..\\.."), 1, 1, 1);

wcInfoString1 = "Revision = " + revObject1.Revision +
 "\nMin Revision = " + revObject1.MinRev +
 "\nMax Revision = " + revObject1.MaxRev +
 "\nDate = " + revObject1.Date +
 "\nURL = " + revObject1.Url + "\nAuthor = " +
 revObject1.Author + "\nHasMods = " +
 revObject1.HasModifications + "\nIsSvnItem = " +
 revObject1.IsSvnItem + "\nNeedsLocking = " +
 revObject1.NeedsLocking + "\nIsLocked = " +
 revObject1.IsLocked + "\nLockCreationDate = " +
 revObject1.LockCreationDate + "\nLockOwner = " +
 revObject1.LockOwner + "\nLockComment = " +
 revObject1.LockComment;
wcInfoString2 = "Revision = " + revObject2.Revision +
 "\nMin Revision = " + revObject2.MinRev +
 "\nMax Revision = " + revObject2.MaxRev +
 "\nDate = " + revObject2.Date +
 "\nURL = " + revObject2.Url + "\nAuthor = " +
 revObject2.Author + "\nHasMods = " +
 revObject2.HasModifications + "\nIsSvnItem = " +
 revObject2.IsSvnItem + "\nNeedsLocking = " +
 revObject2.NeedsLocking + "\nIsLocked = " +
 revObject2.IsLocked + "\nLockCreationDate = " +
 revObject2.LockCreationDate + "\nLockOwner = " +
 revObject2.LockOwner + "\nLockComment = " +
 revObject2.LockComment;
wcInfoString3 = "Revision = " + revObject3.Revision +
 "\nMin Revision = " + revObject3.MinRev +
 "\nMax Revision = " + revObject3.MaxRev +
 "\nDate = " + revObject3.Date +
 "\nURL = " + revObject3.Url + "\nAuthor = " +
 revObject3.Author + "\nHasMods = " +
 revObject3.HasModifications + "\nIsSvnItem = " +
 revObject3.IsSvnItem + "\nNeedsLocking = " +
 revObject3.NeedsLocking + "\nIsLocked = " +
 revObject3.IsLocked + "\nLockCreationDate = " +
 revObject3.LockCreationDate + "\nLockOwner = " +
 revObject3.LockOwner + "\nLockComment = " +
 revObject3.LockComment;
wcInfoString4 = "Revision = " + revObject4.Revision +
 "\nMin Revision = " + revObject4.MinRev +
 "\nMax Revision = " + revObject4.MaxRev +
 "\nDate = " + revObject4.Date +
 "\nURL = " + revObject4.Url + "\nAuthor = " +
 revObject4.Author + "\nHasMods = " +
 revObject4.HasModifications + "\nIsSvnItem = " +
 revObject4.IsSvnItem + "\nNeedsLocking = " +
 revObject4.NeedsLocking + "\nIsLocked = " +
 revObject4.IsLocked + "\nLockCreationDate = " +
 revObject4.LockCreationDate + "\nLockOwner = " +
 revObject4.LockOwner + "\nLockComment = " +
 revObject4.LockComment;

The SubWCRev Program

183

WScript.Echo(wcInfoString1);
WScript.Echo(wcInfoString2);
WScript.Echo(wcInfoString3);
WScript.Echo(wcInfoString4);

The following listing is an example on how to use the SubWCRev COM object from C#:

using LibSubWCRev;
SubWCRev sub = new SubWCRev();
sub.GetWCInfo("C:\\PathToMyFile\\MyFile.cc", true, true);
if (sub.IsSvnItem == true)
{
 MessageBox.Show("versioned");
}
else
{
 MessageBox.Show("not versioned");
}

184

Chapter 7. IBugtraqProvider interface
To get a tighter integration with issue trackers than by simply using the bugtraq: properties, TortoiseSVN can
make use of COM plugins. With such plugins it is possible to fetch information directly from the issue tracker,
interact with the user and provide information back to TortoiseSVN about open issues, verify log messages entered
by the user and even run actions after a successful commit to e.g, close an issue.

We can't provide information and tutorials on how you have to implement a COM object in your preferred
programming language, but we have example plugins in C++/ATL and C# in our repository in the contrib/
issue-tracker-plugins folder. In that folder you can also find the required include files you need to build
your plugin. (Section 3, “License” explains how to access the repository.)

Important

You should provide both a 32-bit and 64-bit version of your plugin. Because the x64-Version of
TortoiseSVN can not use a 32-bit plugin and vice-versa.

7.1. Naming conventions

If you release an issue tracker plugin for TortoiseSVN, please do not name it Tortoise<Something>. We'd
like to reserve the Tortoise prefix for a version control client integrated into the windows shell. For example:
TortoiseCVS, TortoiseSVN, TortoiseHg, TortoiseGit and TortoiseBzr are all version control clients.

Please name your plugin for a Tortoise client Turtle<Something>, where <Something> refers to the issue tracker
that you are connecting to. Alternatively choose a name that sounds like Turtle but has a different first letter. Nice
examples are:

• Gurtle - An issue tracker plugin for Google code

• TurtleMine - An issue tracker plugin for Redmine

• VurtleOne - An issue tracker plugin for VersionOne

7.2. The IBugtraqProvider interface

TortoiseSVN 1.5 and later can use plugins which implement the IBugtraqProvider interface. The interface provides
a few methods which plugins can use to interact with the issue tracker.

HRESULT ValidateParameters (
 // Parent window for any UI that needs to be
 // displayed during validation.
 [in] HWND hParentWnd,

 // The parameter string that needs to be validated.
 [in] BSTR parameters,

 // Is the string valid?
 [out, retval] VARIANT_BOOL *valid
);

This method is called from the settings dialog where the user can add and configure the plugin. The parameters
string can be used by a plugin to get additional required information, e.g., the URL to the issue tracker, login
information, etc. The plugin should verify the parameters string and show an error dialog if the string is not
valid. The hParentWnd parameter should be used for any dialog the plugin shows as the parent window. The
plugin must return TRUE if the validation of the parameters string is successful. If the plugin returns FALSE,
the settings dialog won't allow the user to add the plugin to a working copy path.

IBugtraqProvider interface

185

HRESULT GetLinkText (
 // Parent window for any (error) UI that needs to be displayed.
 [in] HWND hParentWnd,

 // The parameter string, just in case you need to talk to your
 // web service (e.g.) to find out what the correct text is.
 [in] BSTR parameters,

 // What text do you want to display?
 // Use the current thread locale.
 [out, retval] BSTR *linkText
);

The plugin can provide a string here which is used in the TortoiseSVN commit dialog for the button which invokes
the plugin, e.g., "Choose issue" or "Select ticket". Make sure the string is not too long, otherwise it might not fit
into the button. If the method returns an error (e.g., E_NOTIMPL), a default text is used for the button.

HRESULT GetCommitMessage (
 // Parent window for your provider's UI.
 [in] HWND hParentWnd,

 // Parameters for your provider.
 [in] BSTR parameters,
 [in] BSTR commonRoot,
 [in] SAFEARRAY(BSTR) pathList,

 // The text already present in the commit message.
 // Your provider should include this text in the new message,
 // where appropriate.
 [in] BSTR originalMessage,

 // The new text for the commit message.
 // This replaces the original message.
 [out, retval] BSTR *newMessage
);

This is the main method of the plugin. This method is called from the TortoiseSVN commit dialog when the user
clicks on the plugin button.

The parameters string is the string the user has to enter in the settings dialog when he configures the plugin.
Usually a plugin would use this to find the URL of the issue tracker and/or login information or more.

The commonRoot string contains the parent path of all items selected to bring up the commit dialog. Note that
this is not the root path of all items which the user has selected in the commit dialog. For the branch/tag dialog,
this is the path which is to be copied.

The pathList parameter contains an array of paths (as strings) which the user has selected for the commit.

The originalMessage parameter contains the text entered in the log message box in the commit dialog. If the
user has not yet entered any text, this string will be empty.

The newMessage return string is copied into the log message edit box in the commit dialog, replacing whatever
is already there. If a plugin does not modify the originalMessage string, it must return the same string again
here, otherwise any text the user has entered will be lost.

7.3. The IBugtraqProvider2 interface

In TortoiseSVN 1.6 a new interface was added which provides more functionality for plugins. This
IBugtraqProvider2 interface inherits from IBugtraqProvider.

IBugtraqProvider interface

186

HRESULT GetCommitMessage2 (
 // Parent window for your provider's UI.
 [in] HWND hParentWnd,

 // Parameters for your provider.
 [in] BSTR parameters,
 // The common URL of the commit
 [in] BSTR commonURL,
 [in] BSTR commonRoot,
 [in] SAFEARRAY(BSTR) pathList,

 // The text already present in the commit message.
 // Your provider should include this text in the new message,
 // where appropriate.
 [in] BSTR originalMessage,

 // You can assign custom revision properties to a commit
 // by setting the next two params.
 // note: Both safearrays must be of the same length.
 // For every property name there must be a property value!

 // The content of the bugID field (if shown)
 [in] BSTR bugID,

 // Modified content of the bugID field
 [out] BSTR * bugIDOut,

 // The list of revision property names.
 [out] SAFEARRAY(BSTR) * revPropNames,

 // The list of revision property values.
 [out] SAFEARRAY(BSTR) * revPropValues,

 // The new text for the commit message.
 // This replaces the original message
 [out, retval] BSTR * newMessage
);

This method is called from the TortoiseSVN commit dialog when the user clicks on the plugin button. This method
is called instead of GetCommitMessage(). Please refer to the documentation for GetCommitMessage for
the parameters that are also used there.

The parameter commonURL is the parent URL of all items selected to bring up the commit dialog. This is basically
the URL of the commonRoot path.

The parameter bugID contains the content of the bug-ID field (if it is shown, configured with the property
bugtraq:message).

The return parameter bugIDOut is used to fill the bug-ID field when the method returns.

The revPropNames and revPropValues return parameters can contain name/value pairs for revision
properties that the commit should set. A plugin must make sure that both arrays have the same size on return! Each
property name in revPropNames must also have a corresponding value in revPropValues. If no revision
properties are to be set, the plugin must return empty arrays.

HRESULT CheckCommit (
 [in] HWND hParentWnd,

IBugtraqProvider interface

187

 [in] BSTR parameters,
 [in] BSTR commonURL,
 [in] BSTR commonRoot,
 [in] SAFEARRAY(BSTR) pathList,
 [in] BSTR commitMessage,
 [out, retval] BSTR * errorMessage
);

This method is called right before the commit dialog is closed and the commit begins. A plugin can use this method
to validate the selected files/folders for the commit and/or the commit message entered by the user. The parameters
are the same as for GetCommitMessage2(), with the difference that commonURL is now the common URL
of all checked items, and commonRoot the root path of all checked items.

For the branch/tag dialog, the commonURL is the source URL of the copy, and commonRoot is set to the target
URL of the copy.

The return parameter errorMessage must either contain an error message which TortoiseSVN shows to the
user or be empty for the commit to start. If an error message is returned, TortoiseSVN shows the error string in
a dialog and keeps the commit dialog open so the user can correct whatever is wrong. A plugin should therefore
return an error string which informs the user what is wrong and how to correct it.

HRESULT OnCommitFinished (
 // Parent window for any (error) UI that needs to be displayed.
 [in] HWND hParentWnd,

 // The common root of all paths that got committed.
 [in] BSTR commonRoot,

 // All the paths that got committed.
 [in] SAFEARRAY(BSTR) pathList,

 // The text already present in the commit message.
 [in] BSTR logMessage,

 // The revision of the commit.
 [in] ULONG revision,

 // An error to show to the user if this function
 // returns something else than S_OK
 [out, retval] BSTR * error
);

This method is called after a successful commit. A plugin can use this method to e.g., close the selected issue or
add information about the commit to the issue. The parameters are the same as for GetCommitMessage2.

HRESULT HasOptions(
 // Whether the provider provides options
 [out, retval] VARIANT_BOOL *ret
);

This method is called from the settings dialog where the user can configure the plugins. If a plugin provides its own
configuration dialog with ShowOptionsDialog, it must return TRUE here, otherwise it must return FALSE.

HRESULT ShowOptionsDialog(

IBugtraqProvider interface

188

 // Parent window for the options dialog
 [in] HWND hParentWnd,

 // Parameters for your provider.
 [in] BSTR parameters,

 // The parameters string
 [out, retval] BSTR * newparameters
);

This method is called from the settings dialog when the user clicks on the "Options" button that is shown if
HasOptions returns TRUE. A plugin can show an options dialog to make it easier for the user to configure
the plugin.

The parameters string contains the plugin parameters string that is already set/entered.

The newparameters return parameter must contain the parameters string which the plugin constructed from
the info it gathered in its options dialog. That paramameters string is passed to all other IBugtraqProvider and
IBugtraqProvider2 methods.

189

Appendix A. Frequently Asked
Questions (FAQ)

Because TortoiseSVN is being developed all the time it is sometimes hard to keep the documentation completely
up to date. We maintain an online FAQ [https://tortoisesvn.net/faq.html] which contains a selection of the
questions we are asked the most on the TortoiseSVN mailing lists <dev@tortoisesvn.tigris.org> and
<users@tortoisesvn.tigris.org>.

We also maintain a project Issue Tracker [https://sourceforge.net/p/tortoisesvn/tickets/] which tells you about
some of the things we have on our To-Do list, and bugs which have already been fixed. If you think you have
found a bug, or want to request a new feature, check here first to see if someone else got there before you.

If you have a question which is not answered anywhere else, the best place to ask it is on one of the mailing lists:

• <users@tortoisesvn.tigris.org> is the one to use if you have questions about using TortoiseSVN.

• If you want to help out with the development of TortoiseSVN, then you should take part in discussions on
<dev@tortoisesvn.tigris.org>.

• If you want to help with the translation of the TortoiseSVN user interface or the documentation, send an e-mail
to <translators@tortoisesvn.tigris.org>.

https://tortoisesvn.net/faq.html
https://tortoisesvn.net/faq.html
https://sourceforge.net/p/tortoisesvn/tickets/
https://sourceforge.net/p/tortoisesvn/tickets/

190

Appendix B. How Do I...
This appendix contains solutions to problems/questions you might have when using TortoiseSVN.

B.1. Move/copy a lot of files at once

Moving/Copying single files can be done by using TortoiseSVN → Rename.... But if you want to move/copy
a lot of files, this way is just too slow and too much work.

The recommended way is by right dragging the files to the new location. Simply right click on the files you want
to move/copy without releasing the mouse button. Then drag the files to the new location and release the mouse

button. A context menu will appear where you can either choose Context Menu → SVN Copy versioned files

here. or Context Menu → SVN Move versioned files here.

B.2. Force users to enter a log message

There are two ways to prevent users from committing with an empty log message. One is specific to TortoiseSVN,
the other works for all Subversion clients, but requires access to the server directly.

B.2.1. Hook-script on the server

If you have direct access to the repository server, you can install a pre-commit hook script which rejects all commits
with an empty or too short log message.

In the repository folder on the server, there's a sub-folder hooks which contains some example hook scripts you
can use. The file pre-commit.tmpl contains a sample script which will reject commits if no log message is
supplied, or the message is too short. The file also contains comments on how to install/use this script. Just follow
the instructions in that file.

This method is the recommended way if your users also use other Subversion clients than TortoiseSVN. The
drawback is that the commit is rejected by the server and therefore users will get an error message. The client can't
know before the commit that it will be rejected. If you want to make TortoiseSVN have the OK button disabled
until the log message is long enough then please use the method described below.

B.2.2. Project properties

TortoiseSVN uses properties to control some of its features. One of those properties is the tsvn:logminsize
property.

If you set that property on a folder, then TortoiseSVN will disable the OK button in all commit dialogs until the
user has entered a log message with at least the length specified in the property.

For detailed information on those project properties, please refer to Section 4.18, “Project Settings”.

B.3. Update selected files from the repository

Normally you update your working copy using TortoiseSVN → Update. But if you only want to pick up some
new files that a colleague has added without merging in any changes to other files at the same time, you need
a different approach.

Use TortoiseSVN → Check for Modifications. and click on Check repository to see what has changed in the
repository. Select the files you want to update locally, then use the context menu to update just those files.

B.4. Roll back (Undo) revisions in the repository

How Do I...

191

B.4.1. Use the revision log dialog

By far the easiest way to revert the changes from one or more revisions, is to use the revision log dialog.

1. Select the file or folder in which you need to revert the changes. If you want to revert all changes, this should
be the top level folder.

2. Select TortoiseSVN → Show Log to display a list of revisions. You may need to use Show All or Next 100
to show the revision(s) you are interested in.

3. Select the revision you wish to revert. If you want to undo a range of revisions, select the first one and hold
the Shift key while selecting the last one. If you want to pick out individual revisions and ranges, use the Ctrl

key while selecting revisions. Right click on the selected revision(s), then select Context Menu → Revert
changes from this revision.

4. Or if you want to make an earlier revision the new HEAD revision, right click on the selected revision, then

select Context Menu → Revert to this revision. This will discard all changes after the selected revision.

You have reverted the changes within your working copy. Check the results, then commit the changes.

B.4.2. Use the merge dialog

If you want to enter revision numbers as a list, you can use the Merge dialog. The previous method uses merging
behind the scenes; this method uses it explicitly.

1. In your working copy select TortoiseSVN → Merge.

2. In the Merge Type dialog select Merge a range of revisions.

3. In the From: field enter the full repository URL of your working copy folder. This should come up as the
default URL.

4. In the Revision range to merge field enter the list of revisions to roll back (or use the log dialog to select
them as described above).

5. Make sure the Reverse merge checkbox is checked.

6. In the Merge options dialog accept the defaults.

7. Click Merge to complete the merge.

You have reverted the changes within your working copy. Check that the results are as expected, then commit
the changes.

B.4.3. Use svndumpfilter

Since TortoiseSVN never loses data, your “rolled back” revisions still exist as intermediate revisions in the
repository. Only the HEAD revision was changed to a previous state. If you want to make revisions disappear
completely from your repository, erasing all trace that they ever existed, you have to use more extreme measures.
Unless there is a really good reason to do this, it is not recommended. One possible reason would be that someone
committed a confidential document to a public repository.

The only way to remove data from the repository is to use the Subversion command line tool svnadmin. You
can find a description of how this works in the Repository Maintenance [http://svnbook.red-bean.com/en/1.8/
svn.reposadmin.maint.html].

B.5. Compare two revisions of a file or folder

http://svnbook.red-bean.com/en/1.8/svn.reposadmin.maint.html
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.maint.html
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.maint.html

How Do I...

192

If you want to compare two revisions in an item's history, for example revisions 100 and 200 of the same file,

just use TortoiseSVN → Show Log to list the revision history for that file. Pick the two revisions you want to

compare then use Context Menu → Compare Revisions.

If you want to compare the same item in two different trees, for example the trunk and a branch, you can use

the repository browser to open up both trees, select the file in both places, then use Context Menu → Compare
Revisions.

If you want to compare two trees to see what has changed, for example the trunk and a tagged release, you can use

TortoiseSVN → Revision Graph Select the two nodes to compare, then use Context Menu → Compare HEAD
Revisions. This will show a list of changed files, and you can then select individual files to view the changes in
detail. You can also export a tree structure containing all the changed files, or simply a list of all changed files.

Read Section 4.11.3, “Comparing Folders” for more information. Alternatively use Context Menu → Unified
Diff of HEAD Revisions to see a summary of all differences, with minimal context.

B.6. Include a common sub-project

Sometimes you will want to include another project within your working copy, perhaps some library code. There
are at least 4 ways of dealing with this.

B.6.1. Use svn:externals

Set the svn:externals property for a folder in your project. This property consists of one or more lines; each
line has the name of a sub-folder which you want to use as the checkout folder for common code, and the repository
URL that you want to be checked out there. For full details refer to Section 4.19, “External Items”.

Commit the new folder. Now when you update, Subversion will pull a copy of that project from its repository into
your working copy. The sub-folders will be created automatically if required. Each time you update your main
working copy, you will also receive the latest version of all external projects.

If the external project is in the same repository, any changes you make there will be included in the commit list
when you commit your main project.

If the external project is in a different repository, any changes you make to the external project will be shown or
indicated when you commit the main project, but you have to commit those external changes separately.

Of the three methods described, this is the only one which needs no setup on the client side. Once externals are
specified in the folder properties, all clients will get populated folders when they update.

B.6.2. Use a nested working copy

Create a new folder within your project to contain the common code, but do not add it to Subversion.

Select TortoiseSVN → Checkout for the new folder and checkout a copy of the common code into it. You now
have a separate working copy nested within your main working copy.

The two working copies are independent. When you commit changes to the parent, changes to the nested WC are
ignored. Likewise when you update the parent, the nested WC is not updated.

B.6.3. Use a relative location

If you use the same common core code in several projects, and you do not want to keep multiple working copies
of it for every project that uses it, you can just check it out to a separate location which is related to all the other
projects which use it. For example:

C:\Projects\Proj1

How Do I...

193

C:\Projects\Proj2
C:\Projects\Proj3
C:\Projects\Common

and refer to the common code using a relative path, e.g. ..\..\Common\DSPcore.

If your projects are scattered in unrelated locations you can use a variant of this, which is to put the common
code in one location and use drive letter substitution to map that location to something you can hard code in
your projects, e.g. Checkout the common code to D:\Documents\Framework or C:\Documents and
Settings\{login}\My Documents\framework then use

SUBST X: "D:\Documents\framework"

to create the drive mapping used in your source code. Your code can then use absolute locations.

#include "X:\superio\superio.h"

This method will only work in an all-PC environment, and you will need to document the required drive mappings
so your team know where these mysterious files are. This method is strictly for use in closed development
environments, and not recommended for general use.

B.6.4. Add the project to the repository

The maybe easiest way is to simply add the project in a subfolder to your own project working copy. However
this has the disadvantage that you have to update and upgrade this external project manually.

To help with the upgrade, TortoiseSVN provides a command in the explorer right-drag context menu. Simply
right-drag the folder where you unzipped the new version of the external library to the folder in your working

copy, and then select Context Menu → SVN Vendorbranch here. This will then copy the new files over to the
target folder while automatically adding new files and removing files that aren't in the new version anymore.

B.7. Create a shortcut to a repository

If you frequently need to open the repository browser at a particular location, you can create a desktop shortcut
using the automation interface to TortoiseProc. Just create a new shortcut and set the target to:

TortoiseProc.exe /command:repobrowser /path:"url/to/repository"

Of course you need to include the real repository URL.

B.8. Ignore files which are already versioned

If you accidentally added some files which should have been ignored, how do you get them out of version control
without losing them? Maybe you have your own IDE configuration file which is not part of the project, but which
took you a long time to set up just the way you like it.

If you have not yet committed the add, then all you have to do is use TortoiseSVN → Undo Add... to undo the
add. You should then add the file(s) to the ignore list so they don't get added again later by mistake.

If the files are already in the repository, they have to be deleted from the repository and added to the ignore

list. Fortunately TortoiseSVN has a convenient shortcut for doing this. TortoiseSVN → Unversion and add to
ignore list will first mark the file/folder for deletion from the repository, keeping the local copy. It also adds this

How Do I...

194

item to the ignore list so that it will not be added back into Subversion again by mistake. Once this is done you
just need to commit the parent folder.

B.9. Unversion a working copy

If you have a working copy which you want to convert back to a plain folder tree without the .svn directory,
you can simply export it to itself. Read Section 4.27.1, “Removing a working copy from version control” to find
out how.

B.10. Remove a working copy

If you have a working copy which you no longer need, how do you get rid of it cleanly? Easy - just delete it
in Windows Explorer! Working copies are private local entities, and they are self-contained. Deleting a working
copy in Windows Explorer does not affect the data in the repository at all.

195

Appendix C. Useful Tips For
Administrators

This appendix contains solutions to problems/questions you might have when you are responsible for deploying
TortoiseSVN to multiple client computers.

C.1. Deploy TortoiseSVN via group policies

The TortoiseSVN installer comes as an MSI file, which means you should have no problems adding that MSI file
to the group policies of your domain controller.

A good walk-through on how to do that can be found in the knowledge base article 314934 from Microsoft: http://
support.microsoft.com/?kbid=314934 [http://support.microsoft.com/?kbid=314934].

TortoiseSVN must be installed under Computer Configuration and not under User Configuration. This is because
TortoiseSVN needs the CRT and MFC DLLs, which can only be deployed per computer and not per user. If you
really must install TortoiseSVN on a per user basis, then you must first install the MFC and CRT package version
12 from Microsoft on each computer you want to install TortoiseSVN as per user.

You can customize the MSI file if you wish so that all your users end up with the same settings. TSVN settings
are stored in the registry under HKEY_CURRENT_USER\Software\TortoiseSVN and general Subversion
settings (which affect all Subversion clients) are stored in config files under %APPDATA%\Subversion. If you
need help with MSI customization, try one of the MSI transform forums or search the web for “MSI transform”.

C.2. Redirect the upgrade check

TortoiseSVN checks if there's a new version available every few days. If there is a newer version available, a
notification is shown in the commit dialog.

Figure C.1. The commit dialog, showing the upgrade notification

If you're responsible for a lot of users in your domain, you might want your users to use only versions you have
approved and not have them install always the latest version. You probably don't want that upgrade notification
to show up so your users don't go and upgrade immediately.

Versions 1.4.0 and later of TortoiseSVN allow you to redirect that upgrade check to your intranet server. You can
set the registry key HKCU\Software\TortoiseSVN\UpdateCheckURL (string value) to an URL pointing
to a text file in your intranet. That text file must have the following format:

http://support.microsoft.com/?kbid=314934
http://support.microsoft.com/?kbid=314934
http://support.microsoft.com/?kbid=314934

Useful Tips For Administrators

196

1.9.1.6000
A new version of TortoiseSVN is available for you to download!
http://192.168.2.1/downloads/TortoiseSVN-1.9.1.6000-svn-1.9.1.msi

The first line in that file is the version string. You must make sure that it matches the exact version string of the
TortoiseSVN installation package. The second line is a custom text, shown in the commit dialog. You can write
there whatever you want. Just note that the space in the commit dialog is limited. Too long messages will get
truncated! The third line is the URL to the new installation package. This URL is opened when the user clicks on
the custom message label in the commit dialog. You can also just point the user to a web page instead of the MSI
file directly. The URL is opened with the default web browser, so if you specify a web page, that page is opened
and shown to the user. If you specify the MSI package, the browser will ask the user to save the MSI file locally.

C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable

As of version 1.4.0 and later, the TortoiseSVN installer doesn't provide the user with the option to set the
SVN_ASP_DOT_NET_HACK environment variable anymore, since that caused many problems and confusion for
users who always install everything no matter whether they know what it is for.

But the feature is still available in TortoiseSVN and other svn clients. To enable it you have to set the Windows
environment variable named ASPDOTNETHACK to 1. Actually, the value of that environment variable doesn't
matter: if the variable exists the feature is active.

Important

Please note that this hack is only necessary if you're still using VS.NET2002. All later versions of
Visual Studio do not require this hack to be activated! So unless you're using that ancient tool, DO
NOT USE THIS!

C.4. Disable context menu entries

As of version 1.5.0 and later, TortoiseSVN allows you to disable (actually, hide) context menu entries. Since this
is a feature which should not be used lightly but only if there is a compelling reason, there is no GUI for this and it
has to be done directly in the registry. This can be used to disable certain commands for users who should not use
them. But please note that only the context menu entries in the explorer are hidden, and the commands are still
available through other means, e.g. the command line or even other dialogs in TortoiseSVN itself!

The registry keys which hold the information on which context menus to
show are HKEY_CURRENT_USER\Software\TortoiseSVN\ContextMenuEntriesMaskLow and
HKEY_CURRENT_USER\Software\TortoiseSVN\ContextMenuEntriesMaskHigh.

Each of these registry entries is a DWORD value, with each bit corresponding to a specific menu entry. A set bit
means the corresponding menu entry is deactivated.

Value Menu entry

0x0000000000000001 Checkout

0x0000000000000002 Update

0x0000000000000004 Commit

0x0000000000000008 Add

0x0000000000000010 Revert

0x0000000000000020 Cleanup

0x0000000000000040 Resolve

0x0000000000000080 Switch

0x0000000000000100 Import

Useful Tips For Administrators

197

Value Menu entry

0x0000000000000200 Export

0x0000000000000400 Create Repository here

0x0000000000000800 Branch/Tag

0x0000000000001000 Merge

0x0000000000002000 Delete

0x0000000000004000 Rename

0x0000000000008000 Update to revision

0x0000000000010000 Diff

0x0000000000020000 Show Log

0x0000000000040000 Edit Conflicts

0x0000000000080000 Relocate

0x0000000000100000 Check for modifications

0x0000000000200000 Ignore

0x0000000000400000 Repository Browser

0x0000000000800000 Blame

0x0000000001000000 Create Patch

0x0000000002000000 Apply Patch

0x0000000004000000 Revision graph

0x0000000008000000 Lock

0x0000000010000000 Remove Lock

0x0000000020000000 Properties

0x0000000040000000 Diff with URL

0x0000000080000000 Delete unversioned items

0x0000000100000000 Merge All

0x0000000200000000 Diff with previous version

0x0000000400000000 Paste

0x0000000800000000 Upgrade working copy

0x0000001000000000 Diff later

0x0000002000000000 Diff with 'filename'

0x0000004000000000 Unified diff

0x2000000000000000 Settings

0x4000000000000000 Help

0x8000000000000000 About

Table C.1. Menu entries and their values

Example: to disable the “Relocate” the “Delete unversioned items” and the “Settings” menu entries, add the values
assigned to the entries like this:

0x0000000000080000
+ 0x0000000080000000
+ 0x2000000000000000

Useful Tips For Administrators

198

= 0x2000000080080000

The lower DWORD value (0x80080000) must then be stored in HKEY_CURRENT_USER\Software
\TortoiseSVN\ContextMenuEntriesMaskLow, the higher DWORD value (0x20000000) in
HKEY_CURRENT_USER\Software\TortoiseSVN\ContextMenuEntriesMaskHigh.

To enable the menu entries again, simply delete the two registry keys.

199

Appendix D. Automating TortoiseSVN
Since all commands for TortoiseSVN are controlled through command line parameters, you can automate it with
batch scripts or start specific commands and dialogs from other programs (e.g. your favourite text editor).

Important

Remember that TortoiseSVN is a GUI client, and this automation guide shows you how to make the
TortoiseSVN dialogs appear to collect user input. If you want to write a script which requires no
input, you should use the official Subversion command line client instead.

D.1. TortoiseSVN Commands

The TortoiseSVN GUI program is called TortoiseProc.exe. All commands are specified with the parameter
/command:abcd where abcd is the required command name. Most of these commands need at least one path
argument, which is given with /path:"some\path". In the following table the command refers to the /
command:abcd parameter and the path refers to the /path:"some\path" parameter.

There's a special command that does not require the parameter /command:abcd but, if nothing is specified on
the command line, starts the project monitor instead. If /tray is specified, the project monitor starts hidden and
only adds its icon to the system tray.

Since some of the commands can take a list of target paths (e.g. committing several specific files) the /path
parameter can take several paths, separated by a * character.

You can also specify a file which contains a list of paths, separated by newlines. The file must be in UTF-16
format, without a BOM [https://en.wikipedia.org/wiki/Byte-order_mark]. If you pass such a file, use /pathfile
instead of /path. To have TortoiseProc delete that file after the command is finished, you can pass the parameter
/deletepathfile. If you don't pass /deletepathfile, you have to delete the file yourself or the file
gets left behind.

The progress dialog which is used for commits, updates and many more commands usually stays open after the
command has finished until the user presses the OK button. This can be changed by checking the corresponding
option in the settings dialog. But using that setting will close the progress dialog, no matter if you start the command
from your batch file or from the TortoiseSVN context menu.

To specify a different location of the configuration file, use the parameter /configdir:"path\to\config
\directory". This will override the default path, including any registry setting.

To close the progress dialog at the end of a command automatically without using the permanent setting you can
pass the /closeonend parameter.

• /closeonend:0 don't close the dialog automatically

• /closeonend:1 auto close if no errors

• /closeonend:2 auto close if no errors and conflicts

• /closeonend:3 auto close if no errors, conflicts and merges

To close the progress dialog for local operations if there were no errors or conflicts, pass the /closeforlocal
parameter.

The table below lists all the commands which can be accessed using the TortoiseProc.exe command line. As
described above, these should be used in the form /command:abcd. In the table, the /command prefix is
omitted to save space.

Command Description

:about Shows the about dialog. This is also shown if no command is given.

https://en.wikipedia.org/wiki/Byte-order_mark
https://en.wikipedia.org/wiki/Byte-order_mark

Automating TortoiseSVN

200

Command Description

:log Opens the log dialog. The /path specifies the file or folder for which the log
should be shown. Additional options can be set:

• /startrev:xxx,

• /endrev:xxx,

• /strict enables the 'stop-on-copy' checkbox,

• /merge enables the 'include merged revisions' checkbox,

• /datemin:"{datestring}" sets the start date of the filter, and

• /datemax:"{datestring}" sets the end date of the filter. The date format
is the same as used for svn date revisions.

• /findstring:"filterstring" fills in the filter text,

• /findtext forces the filter to use text, not regex, or

• /findregex forces the filter to use regex, not simple text search, and

• /findtype:X with X being a number between 0 and 511. The numbers are
the sum of the following options:

• /findtype:0 filter by everything

• /findtype:1 filter by messages

• /findtype:2 filter by path

• /findtype:4 filter by authors

• /findtype:8 filter by revisions

• /findtype:16 not used

• /findtype:32 filter by bug ID

• /findtype:64 not used

• /findtype:128 filter by date

• /findtype:256 filter by date range

• If /outfile:path\to\file is specified, the selected revisions are written
to that file when the log dialog is closed. The revisions are written in the same
format as is used to specify revisions in the merge dialog.

An svn date revision can be in one of the following formats:

• {2006-02-17}

• {15:30}

• {15:30:00.200000}

• {"2006-02-17 15:30"}

• {"2006-02-17 15:30 +0230"}

Automating TortoiseSVN

201

Command Description

• {2006-02-17T15:30}

• {2006-02-17T15:30Z}

• {2006-02-17T15:30-04:00}

• {20060217T1530}

• {20060217T1530Z}

• {20060217T1530-0500}

:checkout Opens the checkout dialog. The /path specifies the target directory and
the /url specifies the URL to checkout from. If you specify the key
/blockpathadjustments, the automatic checkout path adjustments are
blocked. The /revision:XXX specifies the revision to check out.

:import Opens the import dialog. The /path specifies the directory with the data to import.
You can also specify the /logmsg switch to pass a predefined log message to
the import dialog. Or, if you don't want to pass the log message on the command
line, use /logmsgfile:path, where path points to a file containing the log
message.

:update Updates the working copy in /path to HEAD. If the option /rev is given then
a dialog is shown to ask the user to which revision the update should go. To
avoid the dialog specify a revision number /rev:1234. Other options are /
nonrecursive, /ignoreexternals and /includeexternals. The /
stickydepth indicates that the specified depth should be sticky, creating a
sparse checkout. The /skipprechecks can be set to skip all checks that are done
before an update. If this is specified, then the Show log button is disabled, and the
context menu to show diffs is also disabled after the update.

:commit Opens the commit dialog. The /path specifies the target directory or the list of
files to commit. You can also specify the /logmsg switch to pass a predefined log
message to the commit dialog. Or, if you don't want to pass the log message on the
command line, use /logmsgfile:path, where path points to a file containing
the log message. To pre-fill the bug ID box (in case you've set up integration with
bug trackers properly), you can use the /bugid:"the bug id here" to do
that.

:add Adds the files in /path to version control.

:revert Reverts local modifications of a working copy. The /path tells which items to
revert.

:cleanup Cleans up interrupted or aborted operations and unlocks the working copy in /
path. You also have to pass the /cleanup to actually do the cleanup. Use /
noui to prevent the result dialog from popping up (either telling about the cleanup
being finished or showing an error message). /noprogressui also disables the
progress dialog. /nodlg disables showing the cleanup dialog where the user can
choose what exactly should be done in the cleanup. The available actions can
be specified with the options /cleanup for status cleanup, /breaklocks to
break all locks, /revert to revert uncommitted changes, /delunversioned,
/delignored, /refreshshell, /externals, /fixtimestamps and /
vacuum.

:resolve Marks a conflicted file specified in /path as resolved. If /noquestion is given,
then resolving is done without asking the user first if it really should be done.

:repocreate Creates a repository in /path

:switch Opens the switch dialog. The /path specifies the target directory and /url the
URL to switch to.

Automating TortoiseSVN

202

Command Description

:export Exports the working copy in /path to another directory. If the /path points to an
unversioned directory, a dialog will ask for an URL to export to the directory in /
path. If you specify the key /blockpathadjustments, the automatic export
path adjustments are blocked.

:dropexport Exports the working copy in /path to the directory specified in /droptarget.
This exporting does not use the export dialog but executes directly. The option /
overwrite specifies that existing files are overwritten without user confirmation,
and the option /autorename specifies that if files already exist, the exported files
get automatically renamed to avoid overwriting them. The option /extended can
specify either localchanges to only export files that got changed locally, or
unversioned to also export all unversioned items as well.

:dropvendor Copies the folder in /path recursively to the directory specified in /
droptarget. New files are added automatically, and missing files get removed in
the target working copy, basically ensuring that source and destination are exactly
the same. Specify /noui to skip the confirmation dialog, and /noprogressui
to also disable showing the progress dialog.

:merge Opens the merge dialog. The /path specifies the target directory. For merging
a revision range, the following options are available: /fromurl:URL, /
revrange:string. For merging two repository trees, the following options
are available: /fromurl:URL, /tourl:URL, /fromrev:xxx and /
torev:xxx.

:mergeall Opens the merge all dialog. The /path specifies the target directory.

:copy Brings up the branch/tag dialog. The /path is the working copy to branch/tag from.
And the /url is the target URL. If the urls starts with a ̂ it is assumed to be relative
to the repository root. To already check the option Switch working copy to
new branch/tag you can pass the /switchaftercopy switch. To check the
option Create intermediate folders pass the /makeparents switch.
You can also specify the /logmsg switch to pass a predefined log message to the
branch/tag dialog. Or, if you don't want to pass the log message on the command
line, use /logmsgfile:path, where path points to a file containing the log
message.

:settings Opens the settings dialog.

:remove Removes the file(s) in /path from version control.

:rename Renames the file in /path. The new name for the file is asked with a dialog. To
avoid the question about renaming similar files in one step, pass /noquestion.

:diff Starts the external diff program specified in the TortoiseSVN settings. The /path
specifies the first file. If the option /path2 is set, then the diff program is started
with those two files. If /path2 is omitted, then the diff is done between the
file in /path and its BASE. If the specified file also has property modifications,
the external diff tool is also started for each modified property. To prevent that,
pass the option /ignoreprops. To explicitly set the revision numbers use /
startrev:xxx and /endrev:xxx, and for the optional peg revision use /
pegrevision:xxx. If /blame is set and /path2 is not set, then the diff is
done by first blaming the files with the given revisions. The parameter /line:xxx
specifies the line to jump to when the diff is shown.

:showcompare Depending on the URLs and revisions to compare, this either shows a unified diff
(if the option unified is set), a dialog with a list of files that have changed or if
the URLs point to files starts the diff viewer for those two files.

The options url1, url2, revision1 and revision2 must be specified.
The options pegrevision, ignoreancestry, blame and unified are
optional.

Automating TortoiseSVN

203

Command Description

If the specified url also has property modifications, the external diff tool is
also started for each modified property. To prevent that, pass the option /
ignoreprops.

:conflicteditor Starts the conflict editor specified in the TortoiseSVN settings with the correct files
for the conflicted file in /path.

:relocate Opens the relocate dialog. The /path specifies the working copy path to relocate.

:help Opens the help file.

:repostatus Opens the check-for-modifications dialog. The /path specifies the working copy
directory. If /remote is specified, the dialog contacts the repository immediately
on startup, as if the user clicked on the Check repository button.

:repobrowser Starts the repository browser dialog, pointing to the URL of the working copy given
in /path or /path points directly to an URL.

An additional option /rev:xxx can be used to specify the revision which the
repository browser should show. If the /rev:xxx is omitted, it defaults to HEAD.

If /path points to an URL, the /projectpropertiespath:path/to/wc
specifies the path from where to read and use the project properties.

If /outfile:path\to\file is specified, the selected URL and revision are
written to that file when the repository browser is closed. The first line in that text
file contains the URL, the second line the revision in text format.

:ignore Adds all targets in /path to the ignore list, i.e. adds the svn:ignore property
to those files.

:blame Opens the blame dialog for the file specified in /path.

If the options /startrev and /endrev are set, then the dialog asking for the
blame range is not shown but the revision values of those options are used instead.

If the option /line:nnn is set, TortoiseBlame will open with the specified line
number showing.

The options /ignoreeol, /ignorespaces and /ignoreallspaces are
also supported.

:cat Saves a file from an URL or working copy path given in /path to the location
given in /savepath:path. The revision is given in /revision:xxx. This
can be used to get a file with a specific revision.

:createpatch Creates a patch file for the path given in /path. To skip the file Save-As dialog
you can pass /savepath:path to specify the path where to save the patch file
to directly. To prevent the unified diff viewer from being started showing the patch
file, pass /noview.

:revisiongraph Shows the revision graph for the path given in /path.

To create an image file of the revision graph for a specific path, but without showing
the graph window, pass /output:path with the path to the output file. The
output file must have an extension that the revision graph can actually export to.
These are: .svg, .wmf, .png, .jpg, .bmp and .gif.

Since the revision graph has many options that affect how it is shown, you can
also set the options to use when creating the output image file. Pass these options
with /options:XXXX, where XXXX is a decimal value. The best way to find
the required options is to start the revision graph the usual way, set all user-
interface options and close the graph. Then the options you need to pass on the

Automating TortoiseSVN

204

Command Description

command line can be read from the registry HKCU\Software\TortoiseSVN
\RevisionGraphOptions.

:lock Locks a file or all files in a directory given in /path. The 'lock' dialog is shown
so the user can enter a comment for the lock.

:unlock Unlocks a file or all files in a directory given in /path.

:rebuildiconcache Rebuilds the windows icon cache. Only use this in case the windows icons are
corrupted. A side effect of this (which can't be avoided) is that the icons on the
desktop get rearranged. To suppress the message box, pass /noquestion.

:properties Shows the properties dialog for the path given in /path.

For dealing with versioned properties this command requires a working copy.

Revision properties can be viewed/changed if /path is an URL and /rev:XXX
is specified.

To open the properties dialog directly for a specific property, pass the property name
as /property:name.

:sync Exports/imports settings, either depending on whether the current settings or the
exported settings are newer, or as specified.

If a path is passed with /path, then the path is used to store or read the settings
from.

The parameter /askforpath will show a file open/save dialog for the user to
chose the export/import path.

If neither /load nor /save is specified, then TortoiseSVN determines whether
to export or import the settings by looking at which ones are more recent. If the
export file is more recent than the current settings, then the settings are loaded from
the file. If the current settings are more recent, then the settings are exported to the
settings file.

If /load is specified, the settings are imported from the settings file.

If /save is specified, the current settings are exported to the settings file.

The parameter /local forces a settings export to include local settings, i.e. settings
that refer to local paths.

Table D.1. List of available commands and options

Examples (which should be entered on one line):

TortoiseProc.exe /command:commit
 /path:"c:\svn_wc\file1.txt*c:\svn_wc\file2.txt"
 /logmsg:"test log message" /closeonend:0

TortoiseProc.exe /command:update /path:"c:\svn_wc\" /closeonend:0

TortoiseProc.exe /command:log /path:"c:\svn_wc\file1.txt"
 /startrev:50 /endrev:60 /closeonend:0

D.2. Tsvncmd URL handler

Using special URLs, it is also possible to call TortoiseProc from a web page.

Automating TortoiseSVN

205

TortoiseSVN registers a new protocol tsvncmd: which can be used to create hyperlinks that execute
TortoiseSVN commands. The commands and parameters are the same as when automating TortoiseSVN from
the command line.

The format of the tsvncmd: URL is like this:

tsvncmd:command:cmd?parameter:paramvalue?parameter:paramvalue

with cmd being one of the allowed commands, parameter being the name of a parameter like path or
revision, and paramvalue being the value to use for that parameter. The list of parameters allowed depends
on the command used.

The following commands are allowed with tsvncmd: URLs:

• :update

• :commit

• :diff

• :repobrowser

• :checkout

• :export

• :blame

• :repostatus

• :revisiongraph

• :showcompare

• :log

A simple example URL might look like this:

Update

or in a more complex case:

<a href="tsvncmd:command:showcompare?
url1:https://svn.code.sf.net/p/stefanstools/code/trunk/StExBar/src/setup/Setup.wxs?
url2:https://svn.code.sf.net/p/stefanstools/code/trunk/StExBar/src/setup/Setup.wxs?
revision1:188?revision2:189">compare

D.3. TortoiseIDiff Commands

The image diff tool has a few command line options which you can use to control how the tool is started. The
program is called TortoiseIDiff.exe.

The table below lists all the options which can be passed to the image diff tool on the command line.

Option Description

:left Path to the file shown on the left.

:lefttitle A title string. This string is used in the image view title instead of the full path to
the image file.

Automating TortoiseSVN

206

Option Description

:right Path to the file shown on the right.

:righttitle A title string. This string is used in the image view title instead of the full path to
the image file.

:overlay If specified, the image diff tool switches to the overlay mode (alpha blend).

:fit If specified, the image diff tool fits both images together.

:showinfo Shows the image info box.

Table D.2. List of available options

Example (which should be entered on one line):

TortoiseIDiff.exe /left:"c:\images\img1.jpg" /lefttitle:"image 1"
 /right:"c:\images\img2.jpg" /righttitle:"image 2"
 /fit /overlay

D.4. TortoiseUDiff Commands

The unified diff viewer has only two command line options:

Option Description

:patchfile Path to the unified diff file.

:p Activates pipe mode. The unified diff is read from the console input.

Table D.3. List of available options

Examples (which should be entered on one line):

TortoiseUDiff.exe /patchfile:"c:\diff.patch"

If you create the diff from another command, you can use TortoiseUDiff to show that diff directly:

svn diff | TortoiseUDiff.exe /u

this also works if you omit the /p parameter:

svn diff | TortoiseUDiff.exe

207

Appendix E. Command Line Interface
Cross Reference

Sometimes this manual refers you to the main Subversion documentation, which describes Subversion in terms
of the Command Line Interface (CLI). To help you understand what TortoiseSVN is doing behind the scenes, we
have compiled a list showing the equivalent CLI commands for each of TortoiseSVN's GUI operations.

Note

Even though there are CLI equivalents to what TortoiseSVN does, remember that TortoiseSVN does
not call the CLI but uses the Subversion library directly.

If you think you have found a bug in TortoiseSVN, we may ask you to try to reproduce it using the CLI, so that
we can distinguish TortoiseSVN issues from Subversion issues. This reference tells you which command to try.

E.1. Conventions and Basic Rules

In the descriptions which follow, the URL for a repository location is shown simply as URL, and an example might
be https://svn.code.sf.net/p/tortoisesvn/code/trunk/. The working copy path is shown
simply as PATH, and an example might be C:\TortoiseSVN\trunk.

Important

Because TortoiseSVN is a Windows Shell Extension, it is not able to use the notion of a current
working directory. All working copy paths must be given using the absolute path, not a relative path.

Certain items are optional, and these are often controlled by checkboxes or radio buttons in TortoiseSVN. These
options are shown in [square brackets] in the command line definitions.

E.2. TortoiseSVN Commands

E.2.1. Checkout

svn checkout [-depth ARG] [--ignore-externals] [-r rev] URL PATH

The depth combo box items relate to the -depth argument.

If Omit externals is checked, use the --ignore-externals switch.

If you are checking out a specific revision, specify that after the URL using -r switch.

E.2.2. Update

svn info URL_of_WC
svn update [-r rev] PATH

Updating multiple items is currently not an atomic operation in Subversion. So TortoiseSVN first finds the HEAD
revision of the repository, and then updates all items to that particular revision number to avoid creating a mixed
revision working copy.

Command Line Interface Cross Reference

208

If only one item is selected for updating or the selected items are not all from the same repository, TortoiseSVN
just updates to HEAD.

No command line options are used here. Update to revision also implements the update command, but offers
more options.

E.2.3. Update to Revision

svn info URL_of_WC
svn update [-r rev] [-depth ARG] [--ignore-externals] PATH

The depth combo box items relate to the -depth argument.

If Omit externals is checked, use the --ignore-externals switch.

E.2.4. Commit

In TortoiseSVN, the commit dialog uses several Subversion commands. The first stage is a status check which
determines the items in your working copy which can potentially be committed. You can review the list, diff files
against BASE and select the items you want to be included in the commit.

svn status -v PATH

If Show unversioned files is checked, TortoiseSVN will also show all unversioned files and folders in the
working copy hierarchy, taking account of the ignore rules. This particular feature has no direct equivalent in
Subversion, as the svn status command does not descend into unversioned folders.

If you check any unversioned files and folders, those items will first be added to your working copy.

svn add PATH...

When you click on OK, the Subversion commit takes place. If you have left all the file selection checkboxes in
their default state, TortoiseSVN uses a single recursive commit of the working copy. If you deselect some files,
then a non-recursive commit (-N) must be used, and every path must be specified individually on the commit
command line.

svn commit -m "LogMessage" [-depth ARG] [--no-unlock] PATH...

LogMessage here represents the contents of the log message edit box. This can be empty.

If Keep locks is checked, use the --no-unlock switch.

E.2.5. Diff

svn diff PATH

If you use Diff from the main context menu, you are diffing a modified file against its BASE revision. The output
from the CLI command above also does this and produces output in unified-diff format. However, this is not
what TortoiseSVN is using. TortoiseSVN uses TortoiseMerge (or a diff program of your choosing) to display
differences visually between full-text files, so there is no direct CLI equivalent.

Command Line Interface Cross Reference

209

You can also diff any 2 files using TortoiseSVN, whether or not they are version controlled. TortoiseSVN just
feeds the two files into the chosen diff program and lets it work out where the differences lie.

E.2.6. Show Log

svn log -v -r 0:N --limit 100 [--stop-on-copy] PATH
or
svn log -v -r M:N [--stop-on-copy] PATH

By default, TortoiseSVN tries to fetch 100 log messages using the --limit method. If the settings instruct it to use
old APIs, then the second form is used to fetch the log messages for 100 repository revisions.

If Stop on copy/rename is checked, use the --stop-on-copy switch.

E.2.7. Check for Modifications

svn status -v PATH
or
svn status -u -v PATH

The initial status check looks only at your working copy. If you click on Check repository then the repository is
also checked to see which files would be changed by an update, which requires the -u switch.

If Show unversioned files is checked, TortoiseSVN will also show all unversioned files and folders in the
working copy hierarchy, taking account of the ignore rules. This particular feature has no direct equivalent in
Subversion, as the svn status command does not descend into unversioned folders.

E.2.8. Revision Graph

The revision graph is a feature of TortoiseSVN only. There's no equivalent in the command line client.

What TortoiseSVN does is an

svn info URL_of_WC
svn log -v URL

where URL is the repository root and then analyzes the data returned.

E.2.9. Repo Browser

svn info URL_of_WC
svn list [-r rev] -v URL

You can use svn info to determine the repository root, which is the top level shown in the repository browser.
You cannot navigate Up above this level. Also, this command returns all the locking information shown in the
repository browser.

The svn list call will list the contents of a directory, given a URL and revision.

E.2.10. Edit Conflicts

This command has no CLI equivalent. It invokes TortoiseMerge or an external 3-way diff/merge tool to look at
the files involved in the conflict and sort out which lines to use.

Command Line Interface Cross Reference

210

E.2.11. Resolved

svn resolved PATH

E.2.12. Rename

svn rename CURR_PATH NEW_PATH

E.2.13. Delete

svn delete PATH

E.2.14. Revert

svn status -v PATH

The first stage is a status check which determines the items in your working copy which can potentially be reverted.
You can review the list, diff files against BASE and select the items you want to be included in the revert.

When you click on OK, the Subversion revert takes place. If you have left all the file selection checkboxes in their
default state, TortoiseSVN uses a single recursive (-R) revert of the working copy. If you deselect some files, then
every path must be specified individually on the revert command line.

svn revert [-R] PATH...

E.2.15. Cleanup

svn cleanup PATH

E.2.16. Get Lock

svn status -v PATH

The first stage is a status check which determines the files in your working copy which can potentially be locked.
You can select the items you want to be locked.

svn lock -m "LockMessage" [--force] PATH...

LockMessage here represents the contents of the lock message edit box. This can be empty.

If Steal the locks is checked, use the --force switch.

E.2.17. Release Lock

Command Line Interface Cross Reference

211

svn unlock PATH

E.2.18. Branch/Tag

svn copy -m "LogMessage" URL URL
or
svn copy -m "LogMessage" URL@rev URL@rev
or
svn copy -m "LogMessage" PATH URL

The Branch/Tag dialog performs a copy to the repository. There are 3 radio button options:

• HEAD revision in the repository

• Specific revision in repository

• Working copy

which correspond to the 3 command line variants above.

LogMessage here represents the contents of the log message edit box. This can be empty.

E.2.19. Switch

svn info URL_of_WC
svn switch [-r rev] URL PATH

E.2.20. Merge

svn merge [--dry-run] --force From_URL@revN To_URL@revM PATH

The Test Merge performs the same merge with the --dry-run switch.

svn diff From_URL@revN To_URL@revM

The Unified diff shows the diff operation which will be used to do the merge.

E.2.21. Export

svn export [-r rev] [--ignore-externals] URL Export_PATH

This form is used when accessed from an unversioned folder, and the folder is used as the destination.

Exporting a working copy to a different location is done without using the Subversion library, so there's no
matching command line equivalent.

What TortoiseSVN does is to copy all files to the new location while showing you the progress of the operation.
Unversioned files/folders can optionally be exported too.

In both cases, if Omit externals is checked, use the --ignore-externals switch.

Command Line Interface Cross Reference

212

E.2.22. Relocate

svn switch --relocate From_URL To_URL

E.2.23. Create Repository Here

svnadmin create --fs-type fsfs PATH

E.2.24. Add

svn add PATH...

If you selected a folder, TortoiseSVN first scans it recursively for items which can be added.

E.2.25. Import

svn import -m LogMessage PATH URL

LogMessage here represents the contents of the log message edit box. This can be empty.

E.2.26. Blame

svn blame -r N:M -v PATH
svn log -r N:M PATH

If you use TortoiseBlame to view the blame info, the file log is also required to show log messages in a tooltip.
If you view blame as a text file, this information is not required.

E.2.27. Add to Ignore List

svn propget svn:ignore PATH > tempfile
{edit new ignore item into tempfile}
svn propset svn:ignore -F tempfile PATH

Because the svn:ignore property is often a multi-line value, it is shown here as being changed via a text file
rather than directly on the command line.

E.2.28. Create Patch

svn diff PATH > patch-file

TortoiseSVN creates a patch file in unified diff format by comparing the working copy with its BASE version.

E.2.29. Apply Patch

Applying patches is a tricky business unless the patch and working copy are at the same revision. Luckily for you,
you can use TortoiseMerge, which has no direct equivalent in Subversion.

213

Appendix F. Implementation Details
This appendix contains a more detailed discussion of the implementation of some of TortoiseSVN's features.

F.1. Icon Overlays

Every file and folder has a Subversion status value as reported by the Subversion library. In the command line
client, these are represented by single letter codes, but in TortoiseSVN they are shown graphically using the icon
overlays. Because the number of overlays is very limited, each overlay may represent one of several status values.

The Conflicted overlay is used to represent the conflicted state, where an update or switch results in conflicts
between local changes and changes downloaded from the repository. It is also used to indicate the obstructed
state, which can occur when an operation is unable to complete.

The Modified overlay represents the modified state, where you have made local modifications, the merged
state, where changes from the repository have been merged with local changes, and the replaced state, where
a file has been deleted and replaced by another different file with the same name.

The Deleted overlay represents the deleted state, where an item is scheduled for deletion, or the missing
state, where an item is not present. Naturally an item which is missing cannot have an overlay itself, but the parent
folder can be marked if one of its child items is missing.

The Added overlay is simply used to represent the added status when an item has been added to version control.

The In Subversion overlay is used to represent an item which is in the normal state, or a versioned item whose
state is not yet known. Because TortoiseSVN uses a background caching process to gather status, it may take a
few seconds before the overlay updates.

The Needs Lock overlay is used to indicate when a file has the svn:needs-lock property set.

The Locked overlay is used when the local working copy holds a lock for that file.

The Ignored overlay is used to represent an item which is in the ignored state, either due to a global ignore
pattern, or the svn:ignore property of the parent folder. This overlay is optional.

The Unversioned overlay is used to represent an item which is in the unversioned state. This is an item in a
versioned folder, but which is not under version control itself. This overlay is optional.

Implementation Details

214

If an item has Subversion status none (the item is not within a working copy) then no overlay is shown. If you
have chosen to disable the Ignored and Unversioned overlays then no overlay will be shown for those files either.

An item can only have one Subversion status value. For example a file could be locally modified and it could
be marked for deletion at the same time. Subversion returns a single status value - in this case deleted. Those
priorities are defined within Subversion itself.

When TortoiseSVN displays the status recursively (the default setting), each folder displays an overlay reflecting
its own status and the status of all its children. In order to display a single summary overlay, we use the priority
order shown above to determine which overlay to use, with the Conflicted overlay taking highest priority.

In fact, you may find that not all of these icons are used on your system. This is because the number of overlays
allowed by Windows is limited to 15. Windows uses 4 of those, and the remaining 11 can be used by other
applications. If there are not enough overlay slots available, TortoiseSVN tries to be a Good Citizen (TM) and
limits its use of overlays to give other apps a chance.

Since there are Tortoise clients available for other version control systems, we've created a shared component
which is responsible for showing the overlay icons. The technical details are not important here, all you need to
know is that this shared component allows all Tortoise clients to use the same overlays and therefore the limit of
11 available slots isn't used up by installing more than one Tortoise client. Of course there's one small drawback:
all Tortoise clients use the same overlay icons, so you can't figure out by the overlay icons what version control
system a working copy is using.

• Normal, Modified and Conflicted are always loaded and visible.

• Deleted is loaded if possible, but falls back to Modified if there are not enough slots.

• Read-Only is loaded if possible, but falls back to Normal if there are not enough slots.

• Locked is loaded if possible, but falls back to Normal if there are not enough slots.

• Added is loaded if possible, but falls back to Modified if there are not enough slots.

215

Appendix G. Language Packs and Spell
Checkers

The standard installer has support only for English, but you can download separate language packs and spell check
dictionaries separately after installation.

G.1. Language Packs

The TortoiseSVN user interface has been translated into many different languages, so you may be able to download
a language pack to suit your needs. You can find the language packs on our translation status page [https://
tortoisesvn.net/translation_status_dev.html]. And if there is no language pack available, why not join the team
and submit your own translation ;-)

Each language pack is packaged as a .msi installer. Just run the install program and follow the instructions. After
the installation finishes, the translation will be available.

The documentation has also been translated into several different languages. You can download translated manuals
from the support page [https://tortoisesvn.net/support.html] on our website.

G.2. Spellchecker

TortoiseSVN uses the Windows spell checker if it's available (Windows 8 or later). Which means that if you want
the spell checker to work in a different language than the default OS language, you have to install the spell checker
module in the Windows settings (Settings > Time & Language > Region & Language).

TortoiseSVN will use that spell checker if properly configured with the tsvn:projectlanguage project
property.

In case the Windows spell checker is not available, TortoiseSVN can also use spell checker dictionaries from
OpenOffice [https://openoffice.org] and Mozilla [https://mozilla.org].

The installer automatically adds the US and UK English dictionaries. If you want other languages, the easiest
option is simply to install one of TortoiseSVN's language packs. This will install the appropriate dictionary files
as well as the TortoiseSVN local user interface. After the installation finishes, the dictionary will be available too.

Or you can install the dictionaries yourself. If you have OpenOffice or Mozilla installed, you can copy
those dictionaries, which are located in the installation folders for those applications. Otherwise, you need
to download the required dictionary files from http://wiki.services.openoffice.org/wiki/Dictionaries [http://
wiki.services.openoffice.org/wiki/Dictionaries].

Once you have got the dictionary files, you probably need to rename them so that the filenames only have the
locale chars in it. Example:

• en_US.aff

• en_US.dic

Then just copy them into the %APPDATA%\TortoiseSVN\dic folder. If that folder isn't there, you have to
create it first. TortoiseSVN will also search the Languages sub-folder of the TortoiseSVN installation folder
(normally this will be C:\Program Files\TortoiseSVN\Languages); this is the place where the
language packs put their files. However, the %APPDATA%-folder doesn't require administrator privileges and,
thus, has higher priority. The next time you start TortoiseSVN, the spell checker will be available.

If you install multiple dictionaries, TortoiseSVN uses these rules to select which one to use.

1. Check the tsvn:projectlanguage setting. Refer to Section 4.18, “Project Settings” for information about
setting project properties.

https://tortoisesvn.net/translation_status_dev.html
https://tortoisesvn.net/translation_status_dev.html
https://tortoisesvn.net/translation_status_dev.html
https://tortoisesvn.net/support.html
https://tortoisesvn.net/support.html
https://openoffice.org
https://openoffice.org
https://mozilla.org
https://mozilla.org
http://wiki.services.openoffice.org/wiki/Dictionaries
http://wiki.services.openoffice.org/wiki/Dictionaries
http://wiki.services.openoffice.org/wiki/Dictionaries

Language Packs and Spell Checkers

216

2. If no project language is set, or that language is not installed, try the language corresponding to the Windows
locale.

3. If the exact Windows locale doesn't work, try the “Base” language, e.g. de_CH (Swiss-German) falls back to
de_DE (German).

4. If none of the above works, then the default language is English, which is included with the standard installation.

217

Glossary
Add A Subversion command that is used to add a file or directory to your working

copy. The new items are added to the repository when you commit.

BASE revision The current base revision of a file or folder in your working copy. This is the
revision the file or folder was in, when the last checkout, update or commit
was run. The BASE revision is normally not equal to the HEAD revision.

Blame This command is for text files only, and it annotates every line to show the
repository revision in which it was last changed, and the author who made that
change. Our GUI implementation is called TortoiseBlame and it also shows
the commit date/time and the log message when you hover the mouse of the
revision number.

Branch A term frequently used in revision control systems to describe what happens
when development forks at a particular point and follows 2 separate paths.
You can create a branch off the main development line so as to develop a
new feature without rendering the main line unstable. Or you can branch a
stable release to which you make only bug fixes, while new developments
take place on the unstable trunk. In Subversion a branch is implemented as
a “cheap copy”.

Checkout A Subversion command which creates a local working copy in an empty
directory by downloading versioned files from the repository.

Cleanup To quote from the Subversion book: “ Recursively clean up the working
copy, removing locks and resuming unfinished operations. If you ever get a
working copy locked error, run this command to remove stale locks and get
your working copy into a usable state again. ” Note that in this context lock
refers to local filesystem locking, not repository locking.

Commit This Subversion command is used to pass the changes in your local working
copy back into the repository, creating a new repository revision.

Conflict When changes from the repository are merged with local changes, sometimes
those changes occur on the same lines. In this case Subversion cannot
automatically decide which version to use and the file is said to be in conflict.
You have to edit the file manually and resolve the conflict before you can
commit any further changes.

Copy In a Subversion repository you can create a copy of a single file or an entire
tree. These are implemented as “cheap copies” which act a bit like a link to
the original in that they take up almost no space. Making a copy preserves
the history of the item in the copy, so you can trace changes made before the
copy was made.

Delete When you delete a versioned item (and commit the change) the item no longer
exists in the repository after the committed revision. But of course it still exists
in earlier repository revisions, so you can still access it. If necessary, you can
copy a deleted item and “resurrect” it complete with history.

Diff Shorthand for “Show Differences”. Very useful when you want to see exactly
what changes have been made.

Export This command produces a copy of a versioned folder, just like a working copy,
but without the local .svn folders.

FSFS A proprietary Subversion filesystem backend for repositories. Can be used on
network shares. Default for 1.2 and newer repositories.

Glossary

218

GPO Group policy object.

HEAD revision The latest revision of a file or folder in the repository.

History Show the revision history of a file or folder. Also known as “Log”.

Import Subversion command to import an entire folder hierarchy into the repository
in a single revision.

Lock When you take out a lock on a versioned item, you mark it in the repository as
non-committable, except from the working copy where the lock was taken out.

Log Show the revision history of a file or folder. Also known as “History”.

Merge The process by which changes from the repository are added to your
working copy without disrupting any changes you have already made locally.
Sometimes these changes cannot be reconciled automatically and the working
copy is said to be in conflict.

Merging happens automatically when you update your working copy. You
can also merge specific changes from another branch using TortoiseSVN's
Merge command.

Patch If a working copy has changes to text files only, it is possible to use
Subversion's Diff command to generate a single file summary of those
changes in Unified Diff format. A file of this type is often referred to as a
“Patch”, and it can be emailed to someone else (or to a mailing list) and applied
to another working copy. Someone without commit access can make changes
and submit a patch file for an authorized committer to apply. Or if you are
unsure about a change you can submit a patch for others to review.

Property In addition to versioning your directories and files, Subversion allows you
to add versioned metadata - referred to as “properties” to each of your
versioned directories and files. Each property has a name and a value, rather
like a registry key. Subversion has some special properties which it uses
internally, such as svn:eol-style. TortoiseSVN has some too, such as
tsvn:logminsize. You can add your own properties with any name and
value you choose.

Relocate If your repository moves, perhaps because you have moved it to a different
directory on your server, or the server domain name has changed, you need
to “relocate” your working copy so that its repository URLs point to the new
location.

Note: you should only use this command if your working copy is referring to
the same location in the same repository, but the repository itself has moved.
In any other circumstance you probably need the “Switch” command instead.

Repository A repository is a central place where data is stored and maintained. A
repository can be a place where multiple databases or files are located for
distribution over a network, or a repository can be a location that is directly
accessible to the user without having to travel across a network.

Resolve When files in a working copy are left in a conflicted state following a merge,
those conflicts must be sorted out by a human using an editor (or perhaps
TortoiseMerge). This process is referred to as “Resolving Conflicts”. When
this is complete you can mark the conflicted files as being resolved, which
allows them to be committed.

Revert Subversion keeps a local “pristine” copy of each file as it was when you last
updated your working copy. If you have made changes and decide you want to
undo them, you can use the “revert” command to go back to the pristine copy.

Glossary

219

Revision Every time you commit a set of changes, you create one new “revision” in
the repository. Each revision represents the state of the repository tree at a
certain point in its history. If you want to go back in time you can examine
the repository as it was at revision N.

In another sense, a revision can refer to the set of changes that were made
when that revision was created.

Revision Property (revprop) Just as files can have properties, so can each revision in the repository. Some
special revprops are added automatically when the revision is created, namely:
svn:date svn:author svn:log which represent the commit date/
time, the committer and the log message respectively. These properties can
be edited, but they are not versioned, so any change is permanent and cannot
be undone.

SVN A frequently-used abbreviation for Subversion.

The name of the Subversion custom protocol used by the “svnserve”
repository server.

Switch Just as “Update-to-revision” changes the time window of a working copy to
look at a different point in history, so “Switch” changes the space window
of a working copy so that it points to a different part of the repository. It is
particularly useful when working on trunk and branches where only a few
files differ. You can switch your working copy between the two and only the
changed files will be transferred.

Update This Subversion command pulls down the latest changes from the repository
into your working copy, merging any changes made by others with local
changes in the working copy.

Working Copy This is your local “sandbox”, the area where you work on the versioned files,
and it normally resides on your local hard disk. You create a working copy by
doing a “Checkout” from a repository, and you feed your changes back into
the repository using “Commit”.

220

Index
A
Access, 17
add, 71
add files to repository, 26
annotate, 115
ASP projects, 196
authentication, 25
authentication cache, 25
auto-props, 83
automation, 199, 204, 205, 206

B
backup, 19
blame, 115
branch, 72, 99
bug tracker, 128
bug tracking, 128
bugtracker, 128

C
changelist, 48
changes, 192
check in, 31
check new version, 195
checkout, 28
checkout link, 20
clean, 78
cleanup, 80
CLI, 207
client hooks, 160
COM, 176, 184
COM SubWCRev interface, 181
command line, 199, 205, 206
command line client, 207
commit, 31
commit message, 190
commit messages, 51
commit monitor, 173
common projects, 192
compare, 66
compare files, 191
compare folders, 192
compare revisions, 68
conflict, 10, 39
context menu, 22
context menu entries, 196
copy, 99, 118
copy files, 72
Create, 16

TortoiseSVN, 16
create repository, 16
create working copy, 28

D
delete, 76
deploy, 195
detach from repository, 193
dictionary, 215
diff, 66, 114
diff tools, 71
diffing, 48
disable functions, 196
domain controller, 195
drag handler, 24
drag-n-drop, 24

E
edit log/author, 60
empty message, 190
exclude pattern, 135
expand keywords, 81
explorer, xi
export, 125
export changes, 68
external repositories, 96
externals, 96, 192

F
FAQ, 189
fetch changes, 37
filter, 61

G
global ignore, 135
globbing, 74
GPO, 195
graph, 121
group policies, 195, 196

H
history, 51
hook scripts, 19, 160
hooks, 19

I
IBugtraqProvider, 184
icons, 43
ignore, 73
image diff, 69
import, 26
import in place, 27
install, 1
issue tracker, 128, 184

K
keywords, 81

L
language packs, 215

Index

221

link, 20
locking, 110
log, 51
log cache, 157
log message, 190
log messages, 51

M
mark release, 99
maximize, 26
merge, 102

revision range, 103
two trees, 105

merge conflicts, 108
merge tools, 71
merge tracking, 108
merge tracking log, 60
Microsoft Word, 71
modifications, 45
monitoring projects, 173
move, 77
move files, 72
moved server, 127
moving, 190
msi, 195

N
Network share, 17

O
overlay priority, 213
overlays, 43, 213

P
partial checkout, 28
patch, 114
pattern matching, 74
plugin, 184
praise, 115
project monitor, 173
project properties, 84
proxy server, 149

R
readonly, 110
registry, 167
relocate, 127
remote commits, 173
remove, 76
remove versioning, 193
rename, 77, 118, 190
rename files, 72
reorganize, 190
repo viewer, 133
repo-browser, 118
repository, 7, 26

repository URL changed, 127
resolve, 39
revert, 78, 191
revision, 13, 121
revision graph, 121
revision properties, 60
revprops, 60
right click, 22
right drag, 24
rollback, 190

S
send changes, 31
server moved, 127
server side hook scripts, 19
server viewer, 118
server-side actions, 118
settings, 134
shelve, 50
shortcut, 193
sounds, 134
sparse checkout, 28
special files, 28
spellchecker, 215
statistics, 63
status, 43, 45
SUBST drives, 147
Subversion book, 7
Subversion properties, 81
SubWCRev, 176
SVN_ASP_DOT_NET_HACK, 196
switch, 101

T
tag, 72, 99
temporary files, 26
TortoiseIDiff, 70
TortoiseSVN link, 20
TortoiseSVN properties, 84
translations, 215
tree conflict, 39

U
UNC paths, 17
undo, 78
undo change, 191
undo commit, 191
unified diff, 114
unshelve, 50
unversion, 127, 193
unversioned 'working copy', 125
unversioned files/folders, 73
update, 37, 190
upgrade check, 195
URL changed, 127
URL handler, 204

Index

222

V
vendor projects, 192
version, 195
version control, xi
version extraction, 176
version new files, 71
version number in files, 176
view changes, 43
ViewVC, 133
VS2003, 196

W
web view, 133
website, 20
WebSVN, 133
windows properties, 45
Windows shell, xi
working copy, 11
working copy status, 43

	TortoiseSVN
	Table of Contents
	Preface
	1. What is TortoiseSVN?
	2. TortoiseSVN's Features
	3. License
	4. Development
	4.1. TortoiseSVN's History
	4.2. Acknowledgments

	5. Reading Guide
	6. Terminology used in this document

	Chapter 1. Getting Started
	1.1. Installing TortoiseSVN
	1.1.1. System requirements
	1.1.2. Installation

	1.2. Basic Concepts
	1.3. Go for a Test Drive
	1.3.1. Creating a Repository
	1.3.2. Importing a Project
	1.3.3. Checking out a Working Copy
	1.3.4. Making Changes
	1.3.5. Adding More Files
	1.3.6. Viewing the Project History
	1.3.7. Undoing Changes

	1.4. Moving On ...

	Chapter 2. Basic Version-Control Concepts
	2.1. The Repository
	2.2. Versioning Models
	2.2.1. The Problem of File-Sharing
	2.2.2. The Lock-Modify-Unlock Solution
	2.2.3. The Copy-Modify-Merge Solution
	2.2.4. What does Subversion Do?

	2.3. Subversion in Action
	2.3.1. Working Copies
	2.3.2. Repository URLs
	2.3.3. Revisions
	2.3.4. How Working Copies Track the Repository

	2.4. Summary

	Chapter 3. The Repository
	3.1. Repository Creation
	3.1.1. Creating a Repository with the Command Line Client
	3.1.2. Creating The Repository With TortoiseSVN
	3.1.3. Local Access to the Repository
	3.1.4. Accessing a Repository on a Network Share
	3.1.5. Repository Layout

	3.2. Repository Backup
	3.3. Server side hook scripts
	3.4. Checkout Links
	3.5. Accessing the Repository

	Chapter 4. Daily Use Guide
	4.1. General Features
	4.1.1. Icon Overlays
	4.1.2. Context Menus
	4.1.3. Drag and Drop
	4.1.4. Common Shortcuts
	4.1.5. Authentication
	4.1.6. Maximizing Windows

	4.2. Importing Data Into A Repository
	4.2.1. Import
	4.2.2. Import in Place
	4.2.3. Special Files

	4.3. Checking Out A Working Copy
	4.3.1. Checkout Depth
	4.3.1.1. Sparse Update using Update to Revision
	4.3.1.2. Sparse Update using Repo Browser
	4.3.1.3. Sparse Update using Check for Modifications

	4.4. Committing Your Changes To The Repository
	4.4.1. The Commit Dialog
	4.4.2. Change Lists
	4.4.3. Commit only parts of files
	4.4.4. Excluding Items from the Commit List
	4.4.5. Commit Log Messages
	4.4.6. Commit Progress

	4.5. Update Your Working Copy With Changes From Others
	4.6. Resolving Conflicts
	4.6.1. File Conflicts
	4.6.2. Property Conflicts
	4.6.3. Tree Conflicts
	4.6.3.1. Local delete, incoming edit upon update
	4.6.3.2. Local edit, incoming delete upon update
	4.6.3.3. Local delete, incoming delete upon update
	4.6.3.4. Local missing, incoming edit upon merge
	4.6.3.5. Local edit, incoming delete upon merge
	4.6.3.6. Local delete, incoming delete upon merge
	4.6.3.7. Other tree conflicts

	4.7. Getting Status Information
	4.7.1. Icon Overlays
	4.7.2. Detailed Status
	4.7.3. Local and Remote Status
	4.7.4. Viewing Diffs

	4.8. Change Lists
	4.9. Shelving
	4.10. Revision Log Dialog
	4.10.1. Invoking the Revision Log Dialog
	4.10.2. Revision Log Actions
	4.10.3. Getting Additional Information
	4.10.4. Getting more log messages
	4.10.5. Current Working Copy Revision
	4.10.6. Merge Tracking Features
	4.10.7. Changing the Log Message and Author
	4.10.8. Filtering Log Messages
	4.10.9. Statistical Information
	4.10.9.1. Statistics Page
	4.10.9.2. Commits by Author Page
	4.10.9.3. Commits by date Page

	4.10.10. Offline Mode
	4.10.11. Refreshing the View

	4.11. Viewing Differences
	4.11.1. File Differences
	4.11.2. Line-end and Whitespace Options
	4.11.3. Comparing Folders
	4.11.4. Diffing Images Using TortoiseIDiff
	4.11.5. Diffing Office Documents
	4.11.6. External Diff/Merge Tools

	4.12. Adding New Files And Directories
	4.13. Copying/Moving/Renaming Files and Folders
	4.14. Ignoring Files And Directories
	4.14.1. Pattern Matching in Ignore Lists

	4.15. Deleting, Moving and Renaming
	4.15.1. Deleting files and folders
	4.15.2. Moving files and folders
	4.15.3. Dealing with filename case conflicts
	4.15.4. Repairing File Renames
	4.15.5. Deleting Unversioned Files

	4.16. Undo Changes
	4.17. Cleanup
	4.18. Project Settings
	4.18.1. Subversion Properties
	4.18.1.1. svn:keywords
	4.18.1.2. Adding and Editing Properties
	4.18.1.3. Exporting and Importing Properties
	4.18.1.4. Binary Properties
	4.18.1.5. Automatic property setting

	4.18.2. TortoiseSVN Project Properties
	4.18.3. Property Editors
	4.18.3.1. External Content
	4.18.3.2. SVN Keywords
	4.18.3.3. EOL Style
	4.18.3.4. Issue Tracker Integration
	4.18.3.5. Log Message Sizes
	4.18.3.6. Project Language
	4.18.3.7. MIME-type
	4.18.3.8. svn:needs-lock
	4.18.3.9. svn:executable
	4.18.3.10. Merge log message templates

	4.19. External Items
	4.19.1. External Folders
	4.19.2. External Files
	4.19.3. Creating externals via drag and drop

	4.20. Branching / Tagging
	4.20.1. Creating a Branch or Tag
	4.20.2. Other ways to create a branch or tag
	4.20.3. To Checkout or to Switch...

	4.21. Merging
	4.21.1. Merging a Range of Revisions
	4.21.2. Merging Two Different Trees
	4.21.3. Merge Options
	4.21.4. Reviewing the Merge Results
	4.21.5. Merge Tracking
	4.21.6. Handling Conflicts after Merge
	4.21.7. Feature Branch Maintenance

	4.22. Locking
	4.22.1. How Locking Works in Subversion
	4.22.2. Getting a Lock
	4.22.3. Releasing a Lock
	4.22.4. Checking Lock Status
	4.22.5. Making Non-locked Files Read-Only
	4.22.6. The Locking Hook Scripts

	4.23. Creating and Applying Patches
	4.23.1. Creating a Patch File
	4.23.2. Applying a Patch File

	4.24. Who Changed Which Line?
	4.24.1. Blame for Files
	4.24.2. Blame Differences

	4.25. The Repository Browser
	4.26. Revision Graphs
	4.26.1. Revision Graph Nodes
	4.26.2. Changing the View
	4.26.3. Using the Graph
	4.26.4. Refreshing the View
	4.26.5. Pruning Trees

	4.27. Exporting a Subversion Working Copy
	4.27.1. Removing a working copy from version control

	4.28. Relocating a working copy
	4.29. Integration with Bug Tracking Systems / Issue Trackers
	4.29.1. Adding Issue Numbers to Log Messages
	4.29.1.1. Issue Number in Text Box
	4.29.1.2. Issue Numbers Using Regular Expressions

	4.29.2. Getting Information from the Issue Tracker

	4.30. Integration with Web-based Repository Viewers
	4.31. TortoiseSVN's Settings
	4.31.1. General Settings
	4.31.1.1. Context Menu Settings
	4.31.1.2. TortoiseSVN Dialog Settings 1
	4.31.1.3. TortoiseSVN Dialog Settings 2
	4.31.1.4. TortoiseSVN Dialog Settings 3
	4.31.1.5. TortoiseSVN Colour Settings

	4.31.2. Revision Graph Settings
	4.31.2.1. Revision Graph Colors

	4.31.3. Icon Overlay Settings
	4.31.3.1. Icon Set Selection
	4.31.3.2. Enabled Overlay Handlers

	4.31.4. Network Settings
	4.31.5. External Program Settings
	4.31.5.1. Diff Viewer
	4.31.5.2. Merge Tool
	4.31.5.3. Diff/Merge Advanced Settings

	4.31.6. Saved Data Settings
	4.31.7. Log Caching
	4.31.7.1. Cached Repositories
	4.31.7.2. Log Cache Statistics

	4.31.8. Client Side Hook Scripts
	4.31.8.1. Issue Tracker Integration

	4.31.9. TortoiseBlame Settings
	4.31.10. TortoiseUDiff Settings
	4.31.11. Exporting TSVN Settings
	4.31.12. Advanced Settings

	4.32. Final Step

	Chapter 5. Project Monitor
	5.1. Adding projects to monitor
	5.2. Monitor dialog
	5.2.1. Main operations

	Chapter 6. The SubWCRev Program
	6.1. The SubWCRev Command Line
	6.2. Keyword Substitution
	6.3. Keyword Example
	6.4. COM interface

	Chapter 7. IBugtraqProvider interface
	7.1. Naming conventions
	7.2. The IBugtraqProvider interface
	7.3. The IBugtraqProvider2 interface

	Appendix A. Frequently Asked Questions (FAQ)
	Appendix B. How Do I...
	B.1. Move/copy a lot of files at once
	B.2. Force users to enter a log message
	B.2.1. Hook-script on the server
	B.2.2. Project properties

	B.3. Update selected files from the repository
	B.4. Roll back (Undo) revisions in the repository
	B.4.1. Use the revision log dialog
	B.4.2. Use the merge dialog
	B.4.3. Use svndumpfilter

	B.5. Compare two revisions of a file or folder
	B.6. Include a common sub-project
	B.6.1. Use svn:externals
	B.6.2. Use a nested working copy
	B.6.3. Use a relative location
	B.6.4. Add the project to the repository

	B.7. Create a shortcut to a repository
	B.8. Ignore files which are already versioned
	B.9. Unversion a working copy
	B.10. Remove a working copy

	Appendix C. Useful Tips For Administrators
	C.1. Deploy TortoiseSVN via group policies
	C.2. Redirect the upgrade check
	C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable
	C.4. Disable context menu entries

	Appendix D. Automating TortoiseSVN
	D.1. TortoiseSVN Commands
	D.2. Tsvncmd URL handler
	D.3. TortoiseIDiff Commands
	D.4. TortoiseUDiff Commands

	Appendix E. Command Line Interface Cross Reference
	E.1. Conventions and Basic Rules
	E.2. TortoiseSVN Commands
	E.2.1. Checkout
	E.2.2. Update
	E.2.3. Update to Revision
	E.2.4. Commit
	E.2.5. Diff
	E.2.6. Show Log
	E.2.7. Check for Modifications
	E.2.8. Revision Graph
	E.2.9. Repo Browser
	E.2.10. Edit Conflicts
	E.2.11. Resolved
	E.2.12. Rename
	E.2.13. Delete
	E.2.14. Revert
	E.2.15. Cleanup
	E.2.16. Get Lock
	E.2.17. Release Lock
	E.2.18. Branch/Tag
	E.2.19. Switch
	E.2.20. Merge
	E.2.21. Export
	E.2.22. Relocate
	E.2.23. Create Repository Here
	E.2.24. Add
	E.2.25. Import
	E.2.26. Blame
	E.2.27. Add to Ignore List
	E.2.28. Create Patch
	E.2.29. Apply Patch

	Appendix F. Implementation Details
	F.1. Icon Overlays

	Appendix G. Language Packs and Spell Checkers
	G.1. Language Packs
	G.2. Spellchecker

	Glossary
	Index

