
INTEL ME:
MYTHS AND REALITY

ABOUT SPEAKERS
Igor Skochinsky

Hobby reverse engineer
So�ware developer at Hex-Rays since 2008
NOT a security researcher

Did a bit of e-Reader hacking

ABOUT SPEAKERS
Nicola Corna

Hobby reverse engineer
Interested in DIY hardware
Electronics Engineering student at the Politecnico di Milano
NOT a security researcher

PCB milling

DISCLAIMER
The contents of this talk is based on public information sources and our own

reverse engineering. We can't be certain that our conclusions are 100%
correct and may turn out wrong in future.

We do not have any NDA or "special relationship" with Intel.

INTEL ME
Originally "manageability engine"
later just "management engine"
nowadays "converged security and manageability engine (CSME)"
or "converged security engine (CSE)"
"Trusted Execution Engine" (TXE) for mobile/embedded
"Server Platform Services" (SpS) for servers

INTEL ME

from

Built into many Intel® Chipset–based platforms is a
small, low-power computer subsystem [...] performs

various tasks [...] must function correctly to get the most
performance and capability from your PC

Frequently Asked Questions for the Intel® Management Engine
Verification Utility

https://www.intel.com/content/www/us/en/support/articles/000005974/software/chipset-software.html?wapkw=management+engine+interface

Myth 1: It's a backdoor made for NSA and serves no useful purpose

from Reddit

https://www.reddit.com/r/programming/comments/7bbubw/andy_tanenbaum_author_of_minix_writes_an_open/dpgvyrr/

from Phoronix

https://www.phoronix.com/forums/forum/hardware/motherboards-chipsets/985564-google-even-fear-intel-me-reduce-their-attack-vector-with-nerf?p=985613#post985613

<anon1> How can I "limit my risk" when there is a

dedicated, hidden computer on top of my computer that

has full access and cannot be disabled?

<anon1> There is no need for a "hardware hack". It's a

built-in hardware backdoor.

<anon1> Bypasses any firewall, latches onto any wifi

signal, cannot be disabled, etc.

(from IRC)

Well, that sounds pretty bad. But is it true?

My opinion: pretty unlikely.

Firt, just because you personally don't see a purpose, does not mean there
isn't one. ME was initially created to implement AMT to solve real IT problems.

A short history on remote PC management

Technology Year Features

KVS/KVM 1995 KBD/Video

Wired for Management 1997 WoL, PXE

Alert on LAN 1998 send alerts to central server

ASF 1.0 2001 UDP-only. no encryption

ASF 2.0 2003 added encryption

2004: AMT announced

https://youtu.be/EBQIDS79pRM

Short history of AMT/ME

2005: AMT/ME 1.0

ARC CPU inside Tekoa LAN. IDE-R, SoL, SOAP API.

2006: AMT/ME 2.0

ME moves into GMCH (North bridge).

2007: 3.0(desktop)/ 4.0 (mobile)

first variants without AMT. QST, iTPM appears.
4.1 adds TDT (The� Deterrence Technology) aka Anti-The�

2009: AMT/ME 6.0

first PCH platform, ME Gen 2 (ARC600 CPU)

KVM support (using VNC protocol)

2011: ME 7.1

DAL (Dynamic Application Loader) for IPT/OTP

2014: ME 10.0

Removal of TDT (Anti-The�) feature

2015: ME 11.0

first Gen 3 release (x86 core, Minix OS)

So, initially ME only ran AMT/vPro functionality, but was gradually extended to
other, "non-enterprise" features

TPM (Trusted Platform Module)
QST (fan control)
ICC (Integrated Clock Control)
TDT (Anti-The�)
DAL (IPT/OTP)
SWC (Silicon Workaround Capability)

Many of these features do benefit from being executed on a separate, isolated
CPU and not the host OS.

IMO it's logical Intel opted to use the already present ME instead of adding yet
another subsystem.

As for the .gov angle, if they had control over Intel, why would they request
adding of the infamous ?HAP bit

from Hacker News

http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
https://news.ycombinator.com/item?id=15670274

Myth 2: It is always on even if the PC is turned off

Reality: yes, but it depends

ME POWER STATES
S0/M0: Host is on, ME is fully functional

source: [APMD09]

ME POWER STATES
M1: Host is suspended, ME is partially functional

source: [APMD09]

ME POWER STATES
M-Off: Host is suspended/off, ME is powered down

source: [APMD09]

ME POWER STATES
M3: added in more recent platforms.

Host is in Sx (S3/S4/S5)
ME is running using a dedicated M3 power rail on the board.
Host memory/UMA is unavailable (uses internal SRAM only).

Summary

ME can be running when the host is sleeping/hibernating
shuts down a�er a timeout (may be configurable)

source: [APMD09]

MYTH 3: IT CAN LOCK THE PC WITH A COMMAND
SENT OVER THE AIR

Reality: Was possible, not anymore

Need ME with TDT module (4.1-9.x)
Antithe� needs to be enabled and enrolled, with active subscription.

3G support added in ME 7.0 (3G module must be connected directly to
chipset via SMBus)
"poison pill" must be signed by Intel to be acccepted by the ME
Intel Anti-The� service was shut down in 2015 and TDT removed from
firmware in ME 10.0
current Anti-The� solutions from Computrace et al. use a BIOS/UEFI
module dropping a binary at boot time; no ME involvement

Myth 4: It can read all data on PC/spy on the user

Reality: it's complicated...

it can read/write host memory via DMA engine
no direct access to other host HW (AFAIK), needs cooperation from host
firmware/drivers
some sensitive memory areas are blocked (SMM/VT-d)
has access to iGPU for PAVP but I think no direct access to frame buffer
can emulate IDE or USB devices on the host (for IDE-R and KVM)

More info: [PSTR14]

Myth 5: It's a black box which can't be audited because it's closed source

by @daniel_bilar

https://twitter.com/daniel_bilar/status/919968065667903488

Black box auditing

Plenty of products get audited without source code

See Security Evaluation of Intel's Active Management Technology by Vassilios
Ververis [SMT10] - audit by reading docs + experimentation

The firmware itself is available on the flash and in firmware updates, you
"just" need to figure our how to extract and disassemble the code, then
make sense of it.

IMO it's better to audit the binary code:

you see what actually is being executed by the hardware, not what the
authors think is executed

no need to account for possible #ifdefs/macros/formatting, compiler
optimizations etc. (see "goto fail")

You lose comments and names but those can be actually misleading

It does take a lot of time :(

The public bugs so far have been found without source code:

Vassilios Ververis [SMT10] found several issues in AMT 4.x by monitoring the
network and testing the publicly described provisioning scenarios

INTEL-SA-00075/CVE-2017-5689 [ASM17] was discovered by reading
documentation/looking at network traffic

INTEL-SA-00086/CVE-2017-5705 [PTME17] was found by static analysis of
the firmware code

Conclusion: You can audit it even without source code (and maybe even
without reverse engineering).

Myth 6: you can infect it with a stealthy undetectable rootkit

There were research rootkits for Gen 1 ME, in particular see [IRR09] (BH
2009) and [DAGGER] (Stewin, 2013)

They used a bug in some older BIOSes which allowed access to the ME UMA
to inject code

requires reinfection on each reboot (modification of firmware in flash is
detected and rejected by boot ROM)

in Gen2 (>=6.0) Intel implemented UMA integrity checking, so any
modifications result in shutdown [PSTR14]

Stewin proposed some approaches on detecting DMA attacks from external
hardware (including ME) [DPAHM15]

Myth 7: Users can't do anything about it

See next section

WHAT CAN I DO ABOUT IT?
During my experiments with coreboot I asked myself: "Why do I need the Intel

ME firmware? Can I remove it?"

The had the answer:Libreboot F.A.Q. page

Before version 6.0 (that is, on systems from 2008/2009
and earlier), the ME can be disabled by setting a couple

of values in the SPI flash memory. [...]

https://libreboot.org/faq.html#intelme

ME firmware versions 6.0 and later [...] include “ME
Ignition” firmware that performs some hardware

initialization and power management. If the ME’s boot
ROM does not find in the SPI flash memory an ME

firmware manifest with a valid Intel signature, the
whole PC will shut down a�er 30 minutes.

What? It turns on correctly and then it turns off a�er 30 minutes? Come on...

So the Intel ME firmware is not technically required...

coreboot ML, 12 Sep 2016

— Trammel Hudson

[...] If I just erase the first 4KB of its region [...] coreboot
boots up fine and reports that "WARNING: ME has bad

firmware". My Linux payload initializes without any
complaints. [...]

[...] it has been operational for the past few hours [...]

coreboot ML, 15 Sep 2016

— Trammel Hudson

[...] The only piece that must be present for my x230 to
function is the 512 KB FTPR partition [probably "Factory

Partition and Recovery"], which contains these
compressed modules [...]

coreboot ML, 19 Sep 2016

— Trammel Hudson

[...] I've built an even more reduced ME firmware that
has removed a few modules from the FTPR partition:

[these modules] can be replaced with 0xFF and the ME
will still initialize the system correctly. This leaves only

ROMP, BUP, KERNEL, POLICY and FTCS. [...]

To avoid using an Hex editor I started writing , a python script able
to reduce an Intel ME firmware image to the bare minimum and to force Intel

ME to shut off just a�er the hardware initialization.

me_cleaner

https://github.com/corna/me_cleaner

WHERE'S THE INTEL ME FIRMWARE?
The Intel ME firmware is in the same flash chip of the BIOS/UEFI, in its own

region.

Reading and writing it with an external programmer is quite simple.

INTEL FLASH DESCRIPTOR (IFD)
Descriptor region

BIOS region

Intel ME

firmware region

Intel GbE config region

Embedded Controller

firmware region*
*starting from Skylake

These regions can be analyzed, extracted and modified with the help of
from the project.

ifdtool
coreboot

https://review.coreboot.org/cgit/coreboot.git/tree/util/ifdtool
https://www.coreboot.org/

STEP 1: REMOVE (ALMOST) ALL THE
PARTITIONS

The first step was to remove every partition of the Intel ME firmware image
except for the FTPR, the fundamental one.

FIRMWARE PARTITION TABLE (FPT)

FPT

'FTPR' Offset Size Type

'NFTP' Offset Size Type

FTPR

NFTP

...
Name Offset Size Type

The removal of the partitions is trivial, thanks to the fact that:

The FPT is not signed, has just a checksum
The partitions are individually signed
The offset and size of each partition are saved in each FPT entry

SUCCESS!

STEP 2: REMOVE THE LZMA MODULES
My next step was to remove all the LZMA modules.

Regions, partitions, modules...

...

ME

BIOS

Descriptor

NFTP
P

ar
tit

io
ns

FTPR

R
eg

io
ns

...

...

M
od

ul
es

BUP

KERNEL H
uf

fm
an

TDT

RSA LZ
M

A

Different types of partitions have different internal structure, but our interest
is focused on the "Code" partitions (like the FTPR).

The content of these partitions is organized in modules, however the internal
layout changes between different generations.

INTEL ME/TXE/SPS GENERATIONS
Gen. 1 Gen. 2 Gen. 3

ME versions 1.x-5.x 6.x-10.x 11.x-12.x

TXE versions 1.x-2.x 3.x

SPS versions 1.x 2.x-3.x 4.x

Years 2005-2008 2008-2015 2015-cur

GENERATION 2

Name Offset Size Hash Compression

Name Offset Size Hash Compression

Module data

...
Name Offset Size Hash Compression

RSA signature
Manifest

Module data

So I tried again: I removed every partition except for FTPR and I kept only the
FTPR's Huffman modules (5 modules: ROMP, BUP, KERNEL, POLICY and FTCS).

SUCCESS!

STEP 3: HUFFMAN MODULES
With the help of the source code of I understood the structure of the

Huffman modules.
unhuffme

https://io.netgarage.org/me/

✓

✗

✓

✓

✓

✗

✓

✓

✓

✗

LLUT

BUP

ROMP

Huffman chunks
Valid Offset

...

...

So I updated and I tried to remove the Huffman module with the
"less-important" name (FTCS) and I flashed back the result.

SUCCESS!

me_cleaner

https://github.com/corna/me_cleaner

With the help of I discovered which modules were really needed:

BUP, where the 30-minutes watchdog is turned off
ROMP, which seems to contain some sort of configuration data read by BUP

intelmetool

https://review.coreboot.org/cgit/coreboot.git/tree/util/intelmetool

STEP 4: RECOVER THE FREE SPACE

FTPR

...

ROMP

Header

BUP

KERNEL

FPT

NFTP

...

NET_STACK

Header

NET_SERVICES

tls

GLUT

As expected, Intel ME doesn't complain if I remove the unused tail of its
firmware.

However there was lot of unused space between the FPT and the FTPR
partition, wasted.

FTPR

...

ROMP

Header

BUP

KERNEL

FPT

NFTP

...

NET_STACK

Header

NET_SERVICES

tls

GLUTWasted

So I had to figure out how to move the partitions around the image.

FTPR

ROMP

Header

BUP

FPT

FTPR

ROMP

Header

BUP

Apparently not all the offsets inside a partition are relative to the partition
start, some of them are relative to the beginning of the Intel ME firmware

image.

Luckily, they aren't signed, so a�er many tries (and bricked laptops) I was able
to correct them as well.

In the end, the resulting image had only the FTPR partition with just two
modules, BUP and ROMP, moved to the lowest address possible. The Intel ME

firmware, originally 5 MiB, is now 84 KiB.

FTPR header

Huffman chunks

Huffman chunk pointers

FPT 80 B

~1 KiB

~4 KiB

~13 KiB

~50 KiB

~16 KiB

EFFS FTPR

FOVD
MDES
FCRS

GLUT NFTP

BUP POLICY RSA TDT

UPDATE
ROMP

KERNEL HOSTCOMM CLS FTCS

GENERATION 3
The Intel ME partition scheme is the same, so I was already able to remove all

the partitions (except FTPR) without any modification on .me_cleaner

https://github.com/corna/me_cleaner

CODE PARTITION DIRECTORY (CPD)

CPD

...
kernel.met Offset Size

FTPR.man Offset Size

kernel Offset Size

Name Offset Size

"Old" module manifest

Extensions

kernel metadata

kernel data

S
igns

H
ashes

H
ashes

Each CPD entry can be either:

the partition manifest (".man"), which is the "old" generation 2 manifest
a module metadata (".met"), which also contains the hash of the module
a module

So I started again my search for the "fundamental modules" and I found out
that the modules needed for a correct boot were:

syslib
rbe
kernel
bup

Some weeks a�er my work on generation 3 the Positive Technologies
researchers .

Through the reverse-engineering of the firmware they identified the same
modules I found as fundamental, but with an interesting bonus: Intel ME

generation 3 has a kill switch.

shared their discoveries of a method to disable Intel ME

http://blog.ptsecurity.com/2017/08/disabling-intel-me.html

HAP BIT
The Positive Technologies researchers found an undocumented bit in the

descriptor that, once set, forces Intel ME to turn itself off a�er the initialization
of the system.

This bit is called "HAP bit" in the XMLs inside the Intel binaries and,
, has been added for the US government's "High Assurance

Platform" program.

as
confirmed by Intel

http://blog.ptsecurity.com/2017/08/disabling-intel-me.html

Moreover Igor Skochinsky found a different bit, the AltMeDisable bit, which
should achieve the same result on generation 2.

FINAL RESULTS
The combination of the HAP/AltMeDisable bit and code removal forces Intel
ME to stop just a�er the initialization of the system but, unlike the sole code

removal, is better supported by commercial UEFI/BIOS implementations.

To probe the status of Intel ME I used the so�ware ; its output with
the sole code removal on a Thinkpad X220t (Sandy Bridge) is:

intelmetool

 [...]
 ME: Firmware Init Complete : NO
 [...]
 ME: Current Operation Mode : Normal
 ME: Error Code : Image Failure
 ME: Progress Phase : BUP Phase
 [...]
 ME: Progress Phase State : M0 kernel load
 [...]

https://review.coreboot.org/cgit/coreboot.git/tree/util/intelmetool

while, with the addition of the AltMeDisable bit:
 [...]
 ME: Firmware Init Complete : NO
 [...]
 ME: Current Operation Mode : Debug
 ME: Error Code : No Error
 ME: Progress Phase : BUP Phase
 [...]
 ME: Progress Phase State : [...] straps say ME DISABLED
 [...]

Thanks to the testing performed by the community, have been
reported working on most the PCs from Nehalem to Coffee Lake, both on

commercial firmware and coreboot.

me_cleaner

https://github.com/corna/me_cleaner

The firmware size is greatly reduced:

Original Modified

Generation 2 1.5 MiB / 5 MiB 84 KiB

Generation 3 2 MiB / 6.6 MiB 330 KiB

And many "unwanted features" are now gone, like:

Intel ME kernel (on generation 2)
NFTP (AMT/network stack)
DAL (Dynamic application loader)
PTT (Platform Trust Technology, firmware TPM)

Some issues can arise:

"Brick"
Slight boot delay
Automatic rollback of the modifications
Warning messages during the startup

me_cleaner

https://github.com/corna/me_cleaner

Moreover some features are now broken, as they depend on parts of Intel ME
which have been removed:

Overclocking (ICC)
Intel AMT
Intel PAVP
Parts of Intel SGX
Others...

DEMO

CALL FOR ACTION
Try me_cleaner on your systems (be careful and prepare a way to recover)
Report both successes and failures
Investigate actual behavior of ME as compared to documentation
Go forth and reverse!

ACKNOWLEDGEMENTS
Invisible Things Lab ()
Positive Technologies ()
Trammel Hudson (@qrs,)
Plato Mavropoulos (@platomaniac,)
Damien Zammit ()
Roman Sevko (@apple_rom,)
Federico Izzo and Niccolò Izzo
Gavin Ferris
Hardened GNU/Linux ()

invisiblethingslab.com
ptsecurity.com

trmm.net
win-raid.com

github.com/zamaudio/intelmetool
vpro.by

hardenedlinux.github.io

https://invisiblethingslab.com/
https://www.ptsecurity.com/
https://trmm.net/
https://www.win-raid.com/
https://github.com/zamaudio/intelmetool
https://vpro.by/
https://hardenedlinux.github.io/

REFERENCES
[APMD09] Arvind Kumar., Purushottam Goel, and Ylian Saint-Hilare, Active
Platform Management Demystified: Unleashing the Power of Intel VPro
Technology, 2009, Intel Press, ISBN 9781934053195

[IRR09] Alexander Tereshkin, Rafal Wojtczuk, Introducing Ring -3 Rootkits.
Black Hat USA, 2009, Las Vegas, NV

[SMT10] Vassilios Ververis, Security Evaluation of Intel’s Active Management
Technology, Sweden 2010 TRITA-ICT-EX-2010:37

[DAGGER] Patrick Stewin and Iurii Bystrov, Persistent, Stealthy, Remote-
controlled Dedicated Hardware Malware, 2013, 44CON, London, UK, and
30c3, Hamburg, Germany,

[PSTR14] Xiaoyu Ruan, Platform Embedded Security Technology Revealed:
Safeguarding the Future of Computing with Intel Embedded Security and
Management Engine, 2014, Apress, ISBN 978-14302-6572-6

[DPAHM15] Patrick Stewin, Detecting Peripheral-based Attacks on the Host
Memory, 2015, Springer, ISBN 978-3-319-13515-1

[PTME17] Mark Ermolov, Maxim Goryachy, How to Hack a Turned-Off
Computer, or Running Unsigned Code in Intel Management Engine, Black
Hat Europe 2017, London, UK.

IGOR SKOCHINSKY
@IgorSkochinsky

NICOLA CORNA

skochinsky@gmail.com

github.com/skochinsky

nicola@corna.info

github.com/corna

mailto:skochinsky@gmail.com
https://github.com/skochinsky
mailto:nicola@corna.info
https://github.com/corna

Q & A

THANK YOU!

