
Jiska Classen
Technische Universität Darmstadt

Secure Mobile Networking Lab - SEEMOO

Dissecting Broadcom Bluetooth

Dennis Mantz
Technische Universität Darmstadt
Security Analyst @ ERNW GmbH (Heidelberg)

2

Motivation

3

Reverse engineering Bluetooth firmware - why?!

● Dissecting firmware gives interesting insights on a security perspective.

● Modifying firmware allows to have a full-featured working Bluetooth
implementation and then adding your features…

● Attach open source to a “closed” source project.

● Requires background in security, code analysis, wireless signals…
Not many people can do it, but many require the results.

● We like reverse engineering and already had great experiences
with similar projects (e.g.:).

4

Terminology

Bluetooth PHY

Link Controller

Baseband Resource Manager

Device Mgr Link Manager

Host Controller
Interface (HCI)

RFCOMM SDP

L2CAP

Host

Controller

Remote Device

5

Features

6

Vendor
specific

HCI
(local)

InternalBlue

Bluetooth

Modify
firmware

Fixed coordinate invalid
curve attack test

(CVE-2018-5383)

Crash other
Broadcom firmwares
(CVE-2018-19860)

LMP monitor
& injection

InternalBlue - A Deep Dive into Bluetooth Controller Firmware. Dennis Mantz. https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware

https://github.com/seemoo-lab/internalblue

https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware
https://github.com/seemoo-lab/internalblue

7

● Broadcom offers vendor specific HCI commands READ_RAM, WRITE_RAM, LAUNCH_RAM.
● .hcd-files shipped with the driver also use these commands to apply patches to RAM

and ROM.
● ROM-patching is limited to a few slots, but that’s sufficient for branches into RAM.
● Neither .hcd-files nor vendor specific HCI commands require signatures,

authentication, etc. Just insert your code :)

● Currently only assembly code, but we’re working on C support with NexMon.

Patching firmware

NexMon. https://github.com/seemoo-lab/nexmon

https://github.com/seemoo-lab/nexmon

8

● Okay… maybe not that simple.
Where can we patch? What are we
patching? Which functions are
interesting?

● Almost no strings, no function
names, no documentation
except 2822 pages of Bluetooth
5.0 standard.

● Byte sequences in the standard
help locating some functions.

● Many similarities between different
firmware versions :)

Reversing ...

CodeCut. https://github.com/JHUAPL/CodeCut

https://github.com/JHUAPL/CodeCut

9

● We ported InternalBlue from Nexus 5 to Raspberry Pi 3/3+ and Nexus 6P.

● Tested on CYW20735 Bluetooth 5.0-compliant BT/BLE wireless MCU, it still has
READ_RAM, WRITE_RAM, LAUNCH_RAM HCI commands.
○ Firmware version January 18 2018

● Reading out the whole firmware and applying temporarily patches without any
checks in 2018, thank you BroadcomCypress!

● Reversing could have been faster:
patch.elf shipped with development
software contains symbol table for
almost every firmware function…

Does it work on the newest device?

10

LMP monitoring and injection

● LMP: Link Manager Protocol
● Located below HCI, cannot easily be sniffed as handling happens within firmware.

● Created assembly hooks to forward LMP via HCI. HCI is then forwarded by the
recompiled Android Bluetooth stack (debugging features) via TCP. We automatically
start a Wireshark monitor, which needs an LMP dissector plugin.
monitor lmp start

● Another hook allows to inject LMP frames if
a connection exists, i.e. controlling test mode
on a device under test if it was locally enabled:
sendlmp 57 545575755555555255

● Working assembly snippets currently only on
Nexus 5 and partially on Nexus 6P.

11

We ❤ Bluetooth

12

● If Bluetooth is on, anyone can connect to a device - no matter if it is
discoverable.

● MAC addresses can be derived by sniffing with a software-defined radio.

● [Demo opening connections via kown Bluetooth addresses]

Discoverability

Bluetooth smells like chicken. Dominic Spill, Michael Ossmann, Mark Steward. https://www.youtube.com/watch?v=qMQv1OqS-_8. 2009.

https://www.youtube.com/watch?v=qMQv1OqS-_8

13

● Bluetooth 5.0 still offers “Just Works” pairing if a device claims to have no input
and no output. IO capabilities are not authenticated.

● “Just Works” pairing is not secure against MITM.
● MITM can simply fake Niño and then attack “Just Works”.
● Smartphones only show a yes/no-question instead of warning the user:

This might be insecure pairing!

● [Demo of other devices not showing a pin]

Niño

“Niño” Man-In-The-Middle Attack on Bluetooth Secure Simple Pairing. Konstantin Hypponen, Keijo M.J. Haataja. 2007.

MITM?

14

Testing other devices for known bugs

● CVE-2018-5383 aka “Fixed-coordinate Invalid Curve Attack” (23.07.2018)

● [PoC zeroed y-coordinate in elliptic curve crypto]
 https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware#t=1690

Details on this attack: http://www.cs.technion.ac.il/~biham/BT/
Try this at home! https://github.com/seemoo-lab/internalblue/blob/master/examples/CVE_2018_5383_Invalid_Curve_Attack_PoC.py

https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware#t=1690
http://www.cs.technion.ac.il/~biham/BT/
https://github.com/seemoo-lab/internalblue/blob/master/examples/CVE_2018_5383_Invalid_Curve_Attack_PoC.py

15

Finding Bugs

16

Our own little bug...

● Just a missing “if” somewhere. They silently patched it in firmware version
~summer 2014 but never shipped .hcd-patches for older firmwares. Long
development cycles mean those devices are still around.

“does not exist”

“not standard compliant”

“does not affect WiFi performance”

● CVE-2018-19860 / BT-B-g0ne
[Demo of remote crash]

● Incomplete list of vulnerable devices:
○ Nexus 5
○ iPhone 5, 5s, 6
○ MacBook Pro 13” mid 2012, early 2015, 2016
○ Xperia Z3, Z5
○ Raspberry Pi 3
○ Samsung Galaxy Note 3

17

● Missing parameter check...
● Crashes are the best case!
● More reversing allows to execute meaningful

code, but for each firmware version memory
contents are different.
(So far we did not find arbitrary code execution
on Nexus 5.)

● On Nexus 5 we are able to execute test mode,
which normally needs to be enabled locally on
the host.

● CVE-2018-19860 / BT-B-g0ne
[Demo of remote device under test / jamming]

...little bugs grow up so fast!

18

● Master (attacker) and remote device
exchange test packets.

● Master can disable adaptive
frequency hopping (AFH) on target
device but not change its own…

● No matter if AFH is disabled or not,
one can see both devices hopping on
all channels during test mode.

● Works on Nexus 5 and Xperia Z3
(BCM4339).

Test mode execution

19

● Adding tracepoints with InternalBlue - only execute once, dump registers, stack
and heap, example here is for LMP dispatcher in Nexus 5:
tp add 0x3f3f4

● Emulation with Unicorn/radare2 which generates function call sequences and
memory diffs. Currently only running for one function call.

● Emulation with qemu/gdb for sequences of incoming frames (work in progress).

● Whatever, it generates tons of hexadecimal
stuff on that you can stare for hours.

Bug finding toolchain

Unicorn/radare2 emulation is a modified setup from Hugo (got it after Fitbit talk at 34C3) and Matthias Hanreich (who extended the emulator to a Fitbit fuzzer).

20

Fixing Bugs

21

● Actual fix: Fix vulnerable handler. We have a .hcd-patch ready for Nexus 5.
Releasing that fix would tell you which handler is vulnerable.
Patch size is 14 bytes…

● Generic fix: Apply generic filters, because invisible devices will reply to pings,
connection establishments, etc.

We wanted to release these filters for 35C3, but they crash
Bluetooth of some connecting devices. More recent devices.
Ooops...

Bluetooth firewall

22

● Vendor fix: vendors need to provide updated .hcd-files with their operating system
updates.

● Some devices are too old to get vendor updates…
● Vendor updates will leak the vulnerability.

Turn off Bluetooth if your device has a Broadcom chipset
and was introduced to the market before 2017.

● Long development cycles make firmware from 2014 existing in Bluetooth devices
produced in 2016.

● If you have a very old chip you are not vulnerable: iPhone 4, 4s, Thinkpad T420,
iMac 2009…

How long will the old bug be around?

23

Twitter
@seemoolabhttps://github.com/seemoo-lab/internalblue

https://github.com/seemoo-lab/internalblue

24

Q&A

https://github.com/seemoo-lab/internalblue

https://github.com/seemoo-lab/internalblue

