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Microcode Essentials

• Firmware for the processor

• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities
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x86 Instruction Decoding

3



x86 Instruction Decoding

4



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Updates

• Updates are loaded by BIOS or kernel

• Header followed by multiple triads

• Triad structure:

• Updates protected by weak authentication

• Only one update may be loaded at a time
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Microcode RTL

sub eax, edx
sub.C t56q, rcx, 0x100
jcc ECF, 1
.sw_next // implied sequence word if omitted

ld t1d, [eax]
st [edx], t1d
mov eax, eax
.sw_complete

mov eax, 1
sub.Q rax, rcx
add.EP t56d, eax, ecx
.sw_branch 0xF01
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Hardware Analysis
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ROM - Recovery Process Overview
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ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics

• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs
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ROM - Mapping Result
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ROM - Implementation of Instructions

• SHRD - 0xACA

• RDTSC - 0x318

• WRMSR - 0x6A9
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Microcode applications

• Configurable rdtsc precision

• Microcode assisted Address Sanitizer

• Microcode instruction set randomization

• Microcode-assisted instrumentation

• Authenticated microcode updates

• Enclave-like execution environment
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HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
• Advantages:

• Better performance

• More compact code

• Runtime configuration
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CheckAddressAndCrashIfBad(Addr, kSize) {

ShadowAddr = (Addr >> 3) + kOffset;
if (kSize < 8) {

Shadow = LoadByte(ShadowAddr);
if (Shadow && Shadow <= (Addr & 7) + kSize - 1)

ReportBug(Addr);
} else {

Shadow = LoadNBytes(ShadowAddr, kSize / 8);
if (Shadow) ReportBug(Addr);

}
}

• Advantages:

• Better performance

• More compact code

• Runtime configuration
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HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)
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Hardware
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Hardware

Power	LEDPowerReset
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Angry OS

• Minimal custom operating system

• Control 100% of executed instructions

• Listens for commands on the serial port

• Apply updates, run streamed test code, error reporting
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Framework

• Microcode assembler and verbose disassembler

• x86 assembler to write test code

• Disassemble existing updates and ROM contents after extraction

• Create new updates, loadable by Linux update driver

• Control Angry OS node via serial and GPIO

• Remote execution wrapper
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Conclusion

• Reversing of the ROM opens up many more possibilities

• Lots left to do, if you want to help, contact us!

• Framework, Angry OS, example programs and more available on Github

https://github.com/RUB-SysSec/Microcode

Horst Görtz Institute for IT-Security
Ruhr-Universität Bochum

emproof
www.emproof.de
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