
Inside the AMD Microcode ROM -
(Ab)Using AMD Microcode for fun and security

35th Chaos Communication Congress, Leipzig
December 27, 2018

Benjamin Kollenda, Philipp Koppe, Marc Fyrbiak, Christian Kison,
Christof Paar, Thorsten Holz

Horst Görtz Institute for IT-Security
Ruhr-Universität Bochum

<firstname.lastname>@rub.de

emproof
www.emproof.de



Outline

• Crash course: Micro-architecture basics and Microcode

• Reconstructing the Microcode ROM

• Application examples

• Framework overview

1



Outline

• Crash course: Micro-architecture basics and Microcode

• Reconstructing the Microcode ROM

• Application examples

• Framework overview

1



Microcode Essentials

• Firmware for the processor

• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities

2



Microcode Essentials

• Firmware for the processor
• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities

2



Microcode Essentials

• Firmware for the processor
• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities

2



Microcode Essentials

• Firmware for the processor
• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities

2



Microcode Essentials

• Firmware for the processor
• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities

2



Microcode Essentials

• Firmware for the processor
• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities

2



Microcode Essentials

• Firmware for the processor
• Fix CPU bugs

• Instruction decoding

• Exception handling

• Power Management

• Complex features (Intel SGX)

• Update capabilities

2



x86 Instruction Decoding

3



x86 Instruction Decoding

4



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Engine (Vector Decoder)

5



Microcode Updates

• Updates are loaded by BIOS or kernel

• Header followed by multiple triads

• Triad structure:

• Updates protected by weak authentication

• Only one update may be loaded at a time

6



Microcode Updates

• Updates are loaded by BIOS or kernel

• Header followed by multiple triads

• Triad structure:

• Updates protected by weak authentication

• Only one update may be loaded at a time

6



Microcode Updates

• Updates are loaded by BIOS or kernel

• Header followed by multiple triads

• Triad structure:

• Updates protected by weak authentication

• Only one update may be loaded at a time

6



Microcode Updates

• Updates are loaded by BIOS or kernel

• Header followed by multiple triads

• Triad structure:

• Updates protected by weak authentication

• Only one update may be loaded at a time

6



Microcode Updates

• Updates are loaded by BIOS or kernel

• Header followed by multiple triads

• Triad structure:

• Updates protected by weak authentication

• Only one update may be loaded at a time

6



Microcode RTL

sub eax, edx
sub.C t56q, rcx, 0x100
jcc ECF, 1
.sw_next // implied sequence word if omitted

ld t1d, [eax]
st [edx], t1d
mov eax, eax
.sw_complete

mov eax, 1
sub.Q rax, rcx
add.EP t56d, eax, ecx
.sw_branch 0xF01

7



Outline

• Crash course: Micro-architecture basics and Microcode

• Reconstructing the Microcode ROM

• Application examples

• Framework overview

8



Hardware Analysis

9



Hardware Analysis

9



ROM - Recovery Process Overview

10



ROM - Recovery Process Overview

10



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics

• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics

• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics

• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics

• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics
• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics
• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics
• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics
• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Recovery Details

• Mapping recovery requires physical-virtual address pairs

• Updates yield only two pairs

• Generate mappings by matching the semantics of triads between ROM dump and address
based execution

• Implement microcode emulator to extract semantics
• Works on triad level

• Determines output state based on given input (x86 and microcode registers)

• Supports known arithmetic operations

• Whitelist of no-op operations

• Emulation yielded 54 additional address pairs

11



ROM - Mapping Result

12



ROM - Implementation of Instructions

• SHRD - 0xACA

• RDTSC - 0x318

• WRMSR - 0x6A9

13



Outline

• Crash course: Micro-architecture basics and Microcode

• Reconstructing the Microcode ROM

• Application examples

• Framework overview

14



Microcode applications

• Configurable rdtsc precision

• Microcode assisted Address Sanitizer

• Microcode instruction set randomization

• Microcode-assisted instrumentation

• Authenticated microcode updates

• Enclave-like execution environment

15



Microcode applications

• Configurable rdtsc precision

• Microcode assisted Address Sanitizer

• Microcode instruction set randomization

• Microcode-assisted instrumentation

• Authenticated microcode updates

• Enclave-like execution environment

15



Microcode applications

• Configurable rdtsc precision

• Microcode assisted Address Sanitizer

• Microcode instruction set randomization

• Microcode-assisted instrumentation

• Authenticated microcode updates

• Enclave-like execution environment

15



Microcode applications

• Configurable rdtsc precision

• Microcode assisted Address Sanitizer

• Microcode instruction set randomization

• Microcode-assisted instrumentation

• Authenticated microcode updates

• Enclave-like execution environment

15



Microcode applications

• Configurable rdtsc precision

• Microcode assisted Address Sanitizer

• Microcode instruction set randomization

• Microcode-assisted instrumentation

• Authenticated microcode updates

• Enclave-like execution environment

15



Microcode applications

• Configurable rdtsc precision

• Microcode assisted Address Sanitizer

• Microcode instruction set randomization

• Microcode-assisted instrumentation

• Authenticated microcode updates

• Enclave-like execution environment

15



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid

• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
CheckAddressAndCrashIfBad(Addr, kSize) {

ShadowAddr = (Addr >> 3) + kOffset;
if (kSize < 8) {

Shadow = LoadByte(ShadowAddr);
if (Shadow && Shadow <= (Addr & 7) + kSize - 1)

ReportBug(Addr);
} else {

Shadow = LoadNBytes(ShadowAddr, kSize / 8);
if (Shadow) ReportBug(Addr);

}
}

• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Background

• Address Sanitizer: software instrumentation to detected invalid memory accesses

• Authors proposed HWASAN - hardware assisted ASAN

• New instruction performs ASAN checks, raises fault if invalid
• Advantages:

• Better performance

• More compact code

• Runtime configuration

16



HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)

17



HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)

17



HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)

17



HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)

17



HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)

17



HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)

17



HWASAN Implementation

• Implement HWASAN by replacing bound

• New interface: bound reg, [size]

• No-op for successful check

• Configurable action taken for invalid access

• Single Instruction error check

• No x86 registers needed

• Micro benchmark shows performance advantage (106 vs. 129 cycles)

17



Outline

• Crash course: Micro-architecture basics and Microcode

• Reconstructing the Microcode ROM

• Application examples

• Framework overview

18



Hardware

19



Hardware

19



Hardware

19



Hardware

19



Hardware

Power	LEDPowerReset

20



Angry OS

• Minimal custom operating system

• Control 100% of executed instructions

• Listens for commands on the serial port

• Apply updates, run streamed test code, error reporting

21



Angry OS

• Minimal custom operating system

• Control 100% of executed instructions

• Listens for commands on the serial port

• Apply updates, run streamed test code, error reporting

21



Angry OS

• Minimal custom operating system

• Control 100% of executed instructions

• Listens for commands on the serial port

• Apply updates, run streamed test code, error reporting

21



Angry OS

• Minimal custom operating system

• Control 100% of executed instructions

• Listens for commands on the serial port

• Apply updates, run streamed test code, error reporting

21



Framework

• Microcode assembler and verbose disassembler

• x86 assembler to write test code

• Disassemble existing updates and ROM contents after extraction

• Create new updates, loadable by Linux update driver

• Control Angry OS node via serial and GPIO

• Remote execution wrapper

22



Framework

• Microcode assembler and verbose disassembler

• x86 assembler to write test code

• Disassemble existing updates and ROM contents after extraction

• Create new updates, loadable by Linux update driver

• Control Angry OS node via serial and GPIO

• Remote execution wrapper

22



Framework

• Microcode assembler and verbose disassembler

• x86 assembler to write test code

• Disassemble existing updates and ROM contents after extraction

• Create new updates, loadable by Linux update driver

• Control Angry OS node via serial and GPIO

• Remote execution wrapper

22



Framework

• Microcode assembler and verbose disassembler

• x86 assembler to write test code

• Disassemble existing updates and ROM contents after extraction

• Create new updates, loadable by Linux update driver

• Control Angry OS node via serial and GPIO

• Remote execution wrapper

22



Framework

• Microcode assembler and verbose disassembler

• x86 assembler to write test code

• Disassemble existing updates and ROM contents after extraction

• Create new updates, loadable by Linux update driver

• Control Angry OS node via serial and GPIO

• Remote execution wrapper

22



Framework

• Microcode assembler and verbose disassembler

• x86 assembler to write test code

• Disassemble existing updates and ROM contents after extraction

• Create new updates, loadable by Linux update driver

• Control Angry OS node via serial and GPIO

• Remote execution wrapper

22



Conclusion

• Reversing of the ROM opens up many more possibilities

• Lots left to do, if you want to help, contact us!

• Framework, Angry OS, example programs and more available on Github

https://github.com/RUB-SysSec/Microcode

Horst Görtz Institute for IT-Security
Ruhr-Universität Bochum

emproof
www.emproof.de

23

https://github.com/RUB-SysSec/Microcode

