

Going Deep Underground to Watch the Stars

Neutrino Astronomy with Hyper-Kamiokande

35C3 Leipzig, 2018-12-27

Jost Migenda*

* they/them

The University Sheffield.

@JostMigenda

About me

• Grew up near Berlin

• 2009–15: B.Sc. and M.Sc. in **LITHUANIA Nuclear, Particle & Astrophysics**

• since 2015: PhD on Supernova Neutrinos in Hyper-Kamiokande

@JostMigenda

Baltic Sea

CZECH REPUBLIC

SLOVAKIA

Munich

Be

AUSTRIA HUNGARY

SLOVENIA

Belgrade

Sarajevo SERBIA

MONTENEGRO

ALBANIA

GREECE

CROATIA

ITALY

3D Rome

What are neutrinos? Building Hyper-Kamiokande Let's get physical! Watching the sun shine Watching stars explode •

- **Plug Manhole**

Agenda

Height 78m

https://commons.wikimedia.org/wiki/File:Beta-minus_Decay.svg, Public Domain

... it's the law (of nature)

"Dear radioactive ladies and gentlemen,

[...] I have resorted to a desperate way out to save conservation of energy [...]"

Wolfgang Pauli, letter to Lise Meitner in December 1930

... it's the law (of nature)

neutron

"Dear radioactive ladies and gentlemen,

[...] I have resorted to a desperate way out to save conservation of energy [...]"

Wolfgang Pauli, letter to Lise Meitner in December 1930

... it's the law (of nature)

-inc neutron

"Dear radioactive ladies and gentlemen,

[...] I have resorted to a desperate way out to save conservation of energy [...]"

Wolfgang Pauli, letter to Lise Meitner in December 1930

Neutrinos Are Like Ghosts

Let's Do an Experiment!

Let's Do an Experiment!

60,000,000,000 neutrinos

every second

Let's Do an Experiment!

"there is no practically possible way of observing the neutrino"

— Bethe, Peierls: *Nature* **133** (1934), p. 532

60,000,000,000 neutrinos

every second

- What are neutrinos?
- Building Hyper-Kamiokande
- Let's get physical!
- Watching the sun shine **Plug Manhole**
 - Watching stars explode •

Agenda

Height 78m

1930s: Beta Decay

1970s: Grand Unified Theories → Can the proton decay, too?

1930s: Beta Decay

1970s: Grand Unified Theories \rightarrow Can the proton decay, too?

1983: built the Kamioka <u>N</u>ucleon <u>D</u>ecay <u>Experiment</u>

1930s: Beta Decay

1970s: Grand Unified Theories \rightarrow Can the proton decay, too?

Neutrino Detection 1983: built the Kamioka <u>Nucleon Decay</u> Experiment

History doesn't repeat itself

... but it rhymes

1983–1996

Koshiba, 2002

Nobel Prize image: ®© The Nobel Foundation

History doesn't repeat itself

... but it rhymes

Kamiokande

1983–1996

Super-Kamiokande

1996-today

Koshiba, 2002

Nobel Prize image: ®© The Nobel Foundation

History doesn't repeat itself

Kamiokande

1983–1996

Super-Kamiokande

1996-today

Koshiba, 2002

... but it rhymes

>10,000,000,000,000,000,000,000

solar neutrinos pass through. (That's 10^{22} .)

get detected.

10 - 15

Neutrino-Electron Scattering

• e

Neutrino-Electron Scattering

V Ф

Neutrino-Electron Scattering

emits Cherenkov light because it moves faster than the speed of light *in water* (but still slower than the speed of light *in vacuum*)

Photosensors Detect This Cone of Light

Le Radiophare on flickr, CC-BY 2.0

https://www.flickr.com/photos/144153098@N08/38622329384

Elcobbola (https://commons.wikimedia.org/wiki/File:Statue_of_Liberty_7.jpg), "Statue of Liberty 7", https://creativecommons.org/licenses/by-sa/3.0/legalcode

650 m underground

and a way have a property of the property of

- Contract

ole

1

650 m underground

AN AND AND AN AN

COLUMN DE LE DES DE DE LE DE L

ole

FIG. 22. Location of rock quality measurements in existing tunnels and bore-hole cores at 423 m, 483 m, and 553 m a.s.l. The red rectangulars show the surveyed regions in the measurements. Possible layout of the two caverns is also shown by dashed circles.

"Boring Surveys"

Excavate Cavern

Is local infrastructure (roads, electricity, water) sufficient? Where can you store excavated rock?

Water for 5000 people

Water for 5000 people

Long hair? Beware!

Water for 5000 people

40,000 Pixels

- Photomultiplier Tubes (PMTs)
- earlier: one cable per PMT
- now: one cable for multiple PMTs
 - need watertight, low-power electronics to digitize & combine signals
 - need mesh networking for redundancy

B# 50 %

Contraction -

影響湖防止力//-

NAME AND AND ADDRESS OF ADDRESS O

.

REFERENCE, PERSON EXAMPLES (VALUE ENDINE ALLON-ENVIRENCE) (ALLON (THE ALLON-ENVIRENCE) (ALLON (THE ALLON (ALLON (AL

#184%

-74

18

and It

2世式株式部 内内市には世界最大、直接50××00天電子増き管が に25本、内内市には高度25××00天電子増き管が に35本設定されています。内内市の天電子増き管が 内から入ってくる政策和子(平面前しューオンなど)を 当35とます。

BBC CATEGORIES T RADIO COMMUNICATE

B B C NEWS

You are in: Sci/Tech Front Page Monday, 19 November, 2001, 12:49 GMT UK UK Politics explodes Business Sci/Tech Health

Education Entertainment **Talking Point** In Depth AudioVideo

COMMONWEALTH Games

B B C SPORT B B C Weather

> SERVICES Daily E-mail Mobiles/PDAs Feedback accident.

chain reaction

By BBC News Online science editor Dr **David Whitehouse**

News Ticker One of the world's leading particle physics instruments has been severely damaged in an

Help The underground Low Graphics Super-Kamiokande

Observatory in Japan detects elusive neutrino particles from space by using photomultiplier tubes to register the flashes of light they produce when they pass through a huge tank of water.

On 12 November, one of the photomultiplier tubes exploded causing a chain reaction that resulted in most of the other 11,200 light detectors also blowing up.

WHERE I LIVE INDEX

SEARCH

World Particle physics telescope

A defective photomultiplier tube exploded, setting off a

Yoji Totsuka, Kamioka Observatory

See also:

18 Dec 98 | Sci/Tech Top of the science class

Go

05 Jun 98 | Sci/Tech Ghostly particles rule the universe

Internet links:

 Super-Kamiokande Official Homepage

The BBC is not responsible for the content of external internet sites

Top Sci/Tech stories now:

- Astronomy's next big thing
- Ancient rock points to life's origin
- Mobile spam on the rise
- Giant telescope project gets boost
- New hope for Aids vaccine
- Replace your mouse with your eye
- Device could detect overdose drugs
- Wireless internet arrives in China

Links to more Sci/Tech stories are at the foot of the page.

Hyper-Kamiokande Members

17 countries, >300 people, many timezones ...

- What are neutrinos?
- Building Hyper-Kamiokande
- Let's get physical!
- Watching the sun shine **Plug Manhole**
 - Watching stars explode •

Agenda

Height 78m

- What are neutrinos?
- Building Hyper-Kamiokande
- Let's get physical!
- Watching the sun shine **Plug Manhole**
 - Watching stars explode •

Agenda

Why Does the Sun Shine?

NASA/SDO: https://www.nasa.gov/mission_pages/sunearth/news/News021311-flare.html

Why Does the Sun Shine?

NASA/SDO: https://www.nasa.gov/mission_pages/sunearth/news/News021311-flare.html

Why Does the Sun Shine?

NASA/SDO: https://www.nasa.gov/mission_pages/sunearth/news/News021311-flare.html

Temperature: 15.5 Mio. K **±1%**

Y. Nakano (Super-Kamiokande collaboration): https://indico.cern.ch/event/606690/contributions/2591501/

The Sun in Neutrinos

Exploding Stars – Supernovae

Before

After

SN1994D in galaxy NGC 4526

NASA/ESA, Hubble Key Project Team, High-Z SN Search Team http://www.spacetelescope.org/images/opo9919i/

"However big you think supernovae are, they're bigger than that."

— Donald Spector

Quoted in: R. Munroe: What if? Serious Scientific Answers to Absurd Hypothetical Questions, p. 175. Houghton Mifflin Harcourt, Boston (2014).

NASA/ESA, Hubble Key Project Team, High-Z SN Search Team http://www.spacetelescope.org/images/opo9919i/

Which of the following would be brighter, in terms of t

1. A supernova, seen from as far away as the Sun is

http://what-if.xkcd.com/73/ (CC-BY-NC 2.5)

the amount of energy delivered to your retina:	
s from the Earth, or	

http://what-if.xkcd.com/73/ (CC-BY-NC 2.5)

Which of the following would be brighter, in terms of the amount of energy delivered to your retina:

- 1. A supernova, seen from as far away as the Sun is from the Earth, or
- 2. The detonation of a hydrogen bomb pressed against your eyeball?

magnitude.

http://what-if.xkcd.com/73/ (CC-BY-NC 2.5)

- One of the biggest bangs since the Big Bang!
- Produces a neutron star or black hole
- Birthplace of new stars

Supernova

NASA/ESA, Hubble Key Project Team, High-Z SN Search Team http://www.spacetelescope.org/images/opo9919i/

The Origin of the Chemical Elements

32

The Origin of the Chemical Elements

32

The Origin of the Chemical Elements

32

Life can't exist without supernovae.

Telescopes Can't See Beyond the Surface

NASA/SDO: https://www.nasa.gov/mission_pages/sunearth/news/News021311-flare.html

Luckily, most* supernovae produce lots of neutrinos.

* This talk ignores type Ia SNe.

February 23, 1987: SN 1987A Large Magellanic Cloud, ~160,000 light years

many neutrinos in the first ~1s

few neutrinos up to ~10 s

many neutrinos in the first ~1s

\sim ~99% of energy \rightarrow neutrinos

few neutrinos up to ~10 s

many neutrinos in the first ~1s

\sim ~99% of energy \rightarrow neutrinos

✓ v arrive ~hours before light

few neutrinos up to ~10 s

many neutrinos in the first ~1 s

\sim ~99% of energy \rightarrow neutrinos

✓ v arrive ~hours before light

 1600+ papers written about these events

few neutrinos up to ~10 s

many neutrinos in the first ~1 s

February, 2017: 30th anniversary Tokyo

few neutrinos up to ~10 s

- ... comes from computer simulations which are hard!
 - all fundamental forces play a role
 - nonlinear hydrodynamics
 - relativistic (infall velocity: ~10% of c)
 - extreme conditions

What We Think We Know ...

code verification issues [...] lend ultimate credibility to any one of them."

— Skinner, Burrows, Dolence (arXiv:1512.00113)

What We Think We Know ...

- ... comes from computer simulations which are hard!
 - "There is a rather long list of numerical challenges and
 - The results of different groups are still too far apart to

code verification issues [...] lend ultimate credibility to any one of them."

— Skinner, Burrows, Dolence (arXiv:1512.00113)

Stars often don't explode in these simulations?

What We Think We Know ...

- ... comes from computer simulations which are hard!
 - "There is a rather long list of numerical challenges and
 - The results of different groups are still too far apart to

code verification issues [...] lend ultimate credibility to any one of them."

— Skinner, Burrows, Dolence (arXiv:1512.00113)

- Stars often don't explode in these simulations?
- Take any simulation results with a grain of salt!

What We I hink We Know ...

- ... comes from computer simulations which are hard!
 - "There is a rather long list of numerical challenges and
 - The results of different groups are still too far apart to

The Life of a Star

1 H		big bang fusion				C	
3 Li	4 Be	merging neutron stars?				ex	
11 Na	12 Mg	dying low mass stars				ex	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	20 Fe
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 R i
55 Cs	56 Ba		72 Hf	73 T a	74 W	75 Re	76 O:
87 Fr	88 Ra						

57 La	58 Ce	59 Pr	60 Nd	61 Pn
89	90	91	92	93
Ac	Th	Pa	U	Np

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/

57 La	58 Ce	59 Pr	60 Nd	61 Pm
89	90	91	92	93
Ac	Th	Ра	U	Np

57 La	58 Ce	59 Pr	60 Nd	61 Pm
89	90	91	92	93
Ac	Th	Ра	U	Np

57 La	58 Ce	59 Pr	60 Nd	61 Pm
89	90	91	92	93
Ac	Th	Ра	U	Np

57 La	58 Ce	59 Pr	60 Nd	61 Pm
89	90	91	92	93
Ac	Th	Ра	U	Np

57 La	58 Ce	59 Pr	60 Nd	61 Pm
89	90	91	92	93
Ac	Th	Ра	U	Np

Note:

The following slides rely heavily on animations and won't make any sense without them.

If possible, please watch the video.

1) The Core Collapses

iron core ~1.5 M_{sun}

1) The Core Collapses

2) A Shock Wave Forms ...

2) A Shock Wave Forms ...

3) ... Slows Down ...

4) ... and Gets Revived

5) The Star Explodes

5) The Star Explodes

5) The Star Explodes

Super-Kamiokande

other detectors 20–400 events each

snews.bnl.gov/alert.html

snews.bnl.gov/alert.html

snews.bnl.gov/alert.html

Summary

- Neutrinos are "ghost-like" elementary particles
- detector: Hyper-Kamiokande
- through any other means

Plug Manhole

- energy production inside our Sun •
- how stars explode

A glimpse behind the scenes of a next-gen neutrino

Can observe things that can't be observed directly

